Characterization of biomass residue (yam peels) for bioethanol production
-
2021-11-04 https://doi.org/10.14419/ijac.v9i2.31773 -
Holocellulose, Lignin, Proximate Analysis, Bioethanol. -
Abstract
The potential of yam peels for bioethanol production was investigated through an understanding of their compositional profile. The yam peels dried powder was subjected to X-ray diffraction analysis, and it was examined for proximate and biochemical composition. The result of the biochemical analysis of the yam peels showed the following: holocellulose (57.93 %) [cellulose (29.02 %) + hemicellulose (28.91 %)], and lignin (27.43 %), while the proximate analysis showed the following: moisture (11.11 %), ash (5.93 %), and volatile matter (68.4 %). Consequently, the X-ray diffraction pattern shows the presence of amorphous and crystalline region in the sample. The result showed that the yam peels possesses low lignin and high holocellulose content. This study indicate that the yam peels are potential candidates for bioethanol production.
Â
Â
-
References
[1] Adeolu, A. A., & David, L. (2021). Experimental Determination of the Effects of Pretreaatment on Selected Nigerian Lignocellulosic Biomass in Bioethanol Production. Natyre Research, 11(557), 1-16. https://doi.org/10.1038/s41598-020-78105-8.
[2] Awoyale, A. A., Lokhat, D., & Eloka-Eboka, A. C. (2009). Experimental characterization of selected Nigerian lignocellulosic biomasses in Bioethanol production. International Journal of Ambient Energy, 2162-8246. https://doi.org/10.1080/01430750.2019.1594375.
[3] Bruun, S., Jensen, J. W., Magid, J., Lindedam, J., & Engelse, S. B. (2010). Prediction of the degradability and ash content of wheat straw from different cultivars using near infrared spectroscopy. Ind. Crops Prod, 321–326. https://doi.org/10.1016/j.indcrop.2009.11.011.
[4] Charlton, A., Elias, R., Fish, S., Fowler, P., & Gallagher, J. (2009). he biorefining opportunities in Wales: understanding the scope for building a sustainable, biorenewable economy using plant biomass. Chem. Eng. Res. Des., 1147–1161. https://doi.org/10.1016/j.cherd.2009.06.013.
[5] Daniella, M. (2008). Ethanol’s potential: Looking Beyond Corn. Intern. J. Microbiol, 453-460.
[6] Fatin Afifah, B. K., & Khairiah, H. B. (2014). Effect of cooking temperature on the crystallinity of acid hydrolysed-oil palm cellulose. AIP Conference Proceedings, 1641, pp. 456 - 462. https://doi.org/10.1063/1.4895240.
[7] Ferreira, M. M., Schmidt, F. L., & Ferreira, M. M. (2015). Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities. Elsevier, 14(4), 696–703. https://doi.org/10.1016/j.talanta.2015.06.045.
[8] Gaydon, J. W. (2011). The Application of a Near-Infrared Sensor to Sorting of Minerals. Camborne School of Mines, University of Exeter, Penryn Campius, United Kingdom: Ph.D. thesis.
[9] Hall, M., Bansal, P., Lee, J., Realff, M., & Bommarius, A. (2010). Cellulose crystallinity - a key predictor of the enzymatic hydrolysis rate. FEBS J, 277, 1571-1582. https://doi.org/10.1111/j.1742-4658.2010.07585.x.
[10] Hinrichs, R. A., & Kleinbach, M. (2002). Energy: Its use and the environment (5th ed.). Belmont: Cengage Learning.
[11] Hinrichs, R. A., & Kleinbach, M. (2002). Energy: Its use and the environment (5th ed.). Belmont: Cengage Learning.
[12] Hwangbo, J. K., Seo, J. K., & Kwak, Y. S. (2009). The pretreatment of lignocellulosic biomass for bioethanol production. RIST, 23(2), 126-131.
[13] Kim, S. J., Kim, M. Y., Jeong, S. J., Jang, M. S., & Chung, I. M. (2012). Analysis of the biomass content of various Miscanthus genotypes for biofuel production in Korea. Ind.Crops Prod., 46-49. https://doi.org/10.1016/j.indcrop.2012.01.003.
[14] Malherbe, S., & Thomas, E. C. (2002). Lignocellulose biodegradation: fundamentals and applications. Reviews in Environmental Science and Biotechnology, 105-114. https://doi.org/10.1023/A:1020858910646.
[15] Oberoi, Harinder, S., Ramabhau, Praveen, V. V., Khushal, B., Vinod, B. K., & Tumadu, P. (2010). Enhanced ethanol production via fermentation of rice straw with hydrolysate-adapted Candida tropicalis ATCC 13803." Process Biochemistry. 45(8), 1299-1306. https://doi.org/10.1016/j.procbio.2010.04.017.
[16] Pizzi, A., & Joan, S. (2007). Lignin-based wood panel adhesives without formaldehyde. Holz als Roh-und Werkstoff, 1(65), 65. https://doi.org/10.1007/s00107-006-0130-z.
[17] Rabah, A. B., Oyeleke, S. B., Manga, B. S., & Hassan, L. G. (2011, December). Dilute acid pretreatment of millet and guineacorn husks for bioethanol production. International Research Journal of Microbiology (IRJM), 2(11), 460-465. Retrieved from http://www.interesjournals.org/IRJM
[18] Rabemanolontsoa, H., & Saka, S. (2012). Holocellulose determination in biomass, in: T. Yao (Ed.), Zero-carbon Energy Kyoto 2011. Springer, Japan, 135-140. https://doi.org/10.1007/978-4-431-54067-0_14.
[19] Suk-Jun, J., Seung-Hyun, K., & Ill-Min, C. (2015). Comparison of lignin, cellulose, and hemicellulose contents fornbiofuels utilization among 4 types of lignocellulosic crops. Biomass and Bioenergy, 322-327. https://doi.org/10.1016/j.biombioe.2015.10.007.
[20] Yanqing, H., Zhenhong, F., Jian, Z., Xinliang, L., & Jie, B. (2014). De-ashing treatment of corn stover improves the efficiencies of enzymatic hydrolysis and consequent ethanol fermentation. Bioresource technology, 169, 552-558. https://doi.org/10.1016/j.biortech.2014.06.088.
-
Downloads
-
How to Cite
Bashir, A., Mohammed Baba, N., & M. Akpomie, T. (2021). Characterization of biomass residue (yam peels) for bioethanol production. International Journal of Advanced Chemistry, 9(2), 146-149. https://doi.org/10.14419/ijac.v9i2.31773Received date: 2021-09-09
Accepted date: 2021-10-19
Published date: 2021-11-04