Phytochemical profiling and antioxidant potential of aqueous and ethereal extracts of elephants’ feeds in the savannah ecological zone of Ghana

  • Authors

    • Sylvenus Aguree Pharmaceutical Sciences, Dr. Hilla Limann Technical University, Post Office Box 553-Wa, Upper West Region, Ghana
    • Samson Abah Abagale C.K Tedam University of Technology and Applied Sciences, Post Office Box 24-Navrongo, Ghana.
    • Isaac Sackey University for Development studies, School of Biosciences, Department of Bioscience. Post office Box TL1350-Tamale, Ghana.
    2024-01-06
    https://doi.org/10.14419/8kk1n786
  • Abstract

    This study reports on the phytochemical profiles and antioxidant properties of aqueous and ethereal crude extracts of Cassia sieberiena root, Ficus platyphylla stembark, Terminalia laxiflora root, and leaves, Tamarindus indica fruits, Kigelia africana root and Mitragyna inermis stembark as Elephants feed. Standard and approved methods were employed in this study. The phytochemical constituents detected included alkaloids, saponins, anthraquinones, tannins, flavonoids, phenols, terpenoids, and triterpenoids. The IC50s were 115 µg/mL and 7865 µg/mL for aqueous and ethereal extracts of Mitragyna inermis. 77.29 µg/mL and 1564 µg/mL for aqueous and ethereal extracts of Ficus platyphylla, 5352 µg/mL and 7843 µg/mL for aqueous and ethereal extracts of Terminalia Laxiflora, 8.963 µg/mL and 1253 µg/mL for aqueous and ethereal extracts of Cassia sieberiena, 10423µg/mL and 12645 µg/mL for aqueous and ethereal extracts of Kigelia africana, 1339 µg/mL and 2653µg/mL for aqueous and ethereal extracts of Tamarindus indica and 3.819 µg/mL for gallic acid (control). Cassia sieberiena root aqueous extract had the highest total phenol content of 62.36 ± 6.18 with a corresponding total antioxidant capacity of 289.0 ± 6.642 and the lowest total phenol content of 1.543±2.76 was detected in ethereal extract of Terminalia laxiflora leaves with a corresponding total antioxidant capacity of 241.3±4.04. The aqueous extracts possess stronger DPPH scavenging abilities compared to the ethereal extracts for all samples studied. These findings revealed the health-supporting potentials of these elephant feeds. The finding is also a guide to the managers of our zoos and National parks on the importance of natural feeding in wildlife.

  • References

    1. Jaya P, Sciences NR., & Lumpur K. (2015). haplotype distribution among endangered Asian elephants (Elephas Maximus) in peninsu-lar Malaysia. 44: pp.129–135.
    2. For D S. (2008). Nutrient analysis of important food tree species of Asian elephant (Elephas maximus) in hot-dry season in Bardia na-tional park, Nepal. January.
    3. Beth P, Katherine A. Leighty, Christina Alligood & Kathy Carlstead. (2013). Using Science to Understand Elephant Welfare, Journal of Applied Animal Welfare Science, 16:4, pp. 395-396. https://doi.org/10.1080/10888705.2013.827945.
    4. Gómez A., & Nichols E. (2013). Parasitic biodiversity as a conservation target. International Journal of Parasitology: Parasites in Wildlife, 2: pp. 222-227. https://doi.org/10.1016/j.ijppaw.2013.07.002.
    5. Baluska D & Ninkovic V. (2005) Plant communication from an ecological perspective (Signalling and Communication in Plants). PP. 233-342
    6. Jan R, Asaf S, Numan M, & Kim K. (2021). Plant Secondary Metabolite Biosynthesis and Transcriptional Regulation in Response to Biotic and Abiotic Stress Conditions. Pp1–31. https://doi.org/10.3390/agronomy11050968.
    7. Abhijith T V, Ashokkumar M, Dencin R T, & George C. (2018). Gastrointestinal parasites of Asian elephants in south Wayanad forest division, Kerala, India. Journal of Parasitic Diseases, 42(3), pp.382–390. https://doi.org/10.1007/s12639-018-1012-0.
    8. Huffman, M. A. (2016). Primate Self-Medication, Passive Prevention and Active Treatment-A Brief Review. International Journal of Multidisciplinary Studies (IJMS) (Vol. 3, Issue 2). https://doi.org/10.4038/ijms.v3i2.1.
    9. Thórhallsdóttir AG, Provenza FD, & Balph DF. (1990). Ability of lambs to learn about novel foods while observing or participating with social models. Applied Animal Behaviour Science, 25(1-2): pp.25-33. https://doi.org/10.1016/0168-1591(90)90066-M.
    10. Baines, L., Morgan, E. R., Ofthile, M., & Evans, K. (2015). Occurrence and seasonality of internal parasite infection in elephants, Loxodonta africana, in the Okavango Delta, Botswana. International Journal for Parasitology: Parasites and Wildlife, 4(1), pp43–48. https://doi.org/10.1016/j.ijppaw.2015.01.004.
    11. Hutchings MR., Athanasiadou S., Kyriazakis I., Gordon A. (2003). “Can animals use foraging behaviour to combat parasites”. Pro-ceedings of the Nutrition Society, 62: pp. 361–370. https://doi.org/10.1079/PNS2003243.
    12. John B, Spiridoula A, Stig Milan T. (2006). Use of plants in novel approaches for control of gastrointestinal helminths in livestock with emphasis on small ruminants. Veterinary parasitology. Vol. 139(4): pp. 308-320. https://doi.org/10.1016/j.vetpar.2006.04.021.
    13. Jansen RMC, Wildt J, Hofstee JW, Bouwmeester HJ, and van Henten EJ. (2010). Plant volatiles: useful signals to monitor crop health status in greenhouses. https://doi.org/10.1007/978-3-642-12162-3_13.
    14. Duncan A J, & Poppi D P. (2008). Nutritional ecology of grazing and browsing ruminants. The Ecology of Browsing and Grazing. Edit-ed by Gordon, I. J. and Prins, H. H. T. Germany: Springer. Pp. 89-116. https://doi.org/10.1007/978-3-540-72422-3_4.
    15. Mehanni B, Citrin D S, Acharya L, Wong I, Nirola R, Sherchan B, Gauchan. (2017). Power, potential, and Pitfalls in global health aca-demic partnerships: review and reflections on an approach in Nepal. Global health action 10(1): 1367161. https://doi.org/10.1080/16549716.2017.1367161.
    16. Jeremy M, Dave B, Graham I & Kerley H. (2005). Why do elephants damage Savanna trees. South African Journal of Science. Vol. 101(5): pp. 213-215.
    17. Sylvenus A, Samson A A & Isaac S. (2023). Proximate Composition and mineral profile of elephants’ forages in the Savannah Ecolog-ical Zone of Ghana. Journal of Applied Animal Research, 51 (1). pp. 573-580. https://doi.org/10.1080/09712119.2023.2250409.
    18. Owen-Smith, R.N. (1992). Megaherbivores. The influence of very large body size on ecology. Cambridge University Press, Cambridge, UK.
    19. Madani MM., Auger WR., Pretorius V., Sakakibara N., Kerr KM., Kim NH., Fedullo PF., Jamieson SW. (2012). Pulmonary endarterec-tomy: recent changes in a single institution's experience of more than 2,700 patients. Ann Thorac Surg, 94(1): pp. 97-103. https://doi.org/10.1016/j.athoracsur.2012.04.004.
    20. Poojar G, Ananthan PS, Krishnan M. (2017). Ultrasound assissted extraction of pectin in from waste artocarpus.‘Methodology Used in the Study’, Asian Journal of Pharmaceutical and Clinical Research, 7(10): pp. 1–5.
    21. Govindarajan R, Rastogi S, Vijayakumar M, Shirwaikar A. (2003). Studies on the antioxidant activities of Desmodium gangeticum. Bio-logical and Pharmaceutical Bulletin, 26(10), 1424–1427. https://doi.org/10.1248/bpb.26.1424.
    22. Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phos-phomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337–341. https://doi.org/10.1006/abio.1999.4019.
    23. Lu Y, & Foo L Y. (2011). Antioxidant activities of polyphenols from sage (Salvia officinalis). Food Chemistry, 75, 197–202. https://doi.org/10.1016/S0308-8146(01)00198-4.
    24. Bhardwaj A, Deeksha S, Nitesh J & Pavan K. A. (2015) ‘Antimicrobial and Phytochemical Screening of Endophytic Fungi Isolated from Spikes of Pinus roxburghii Abstract Screening of Bioactive Properties of Fungal Metabolites’, Archives of Clinical Microbiology, 6(3), pp. 1–9.
    25. Ellis HM., Spann DR., &Posakony JW. (1990). Extramacrochaetae, a negative regulator of sensory organ development in Drosophila, defines a new class of helix-loop-helix proteins. 61: pp.27-28. https://doi.org/10.1016/0092-8674(90)90212-W.
    26. Isah, T. (2019). Stress and defense responses in plant secondary metabolites production. Biological Research, pp1–25. https://doi.org/10.1186/s40659-019-0246-3.
    27. Lai P K. (2004). Antimicrobial and Chemo-preventive properties of herbs and spices”. Current medicinal chemistry. pp. 1451-1460. https://doi.org/10.2174/0929867043365107.
    28. Tyagi, T. and Agarwal, M. (2017) ‘Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.)- Journal of Pharmacognosy and Phytochemistry, 6(1), pp. 195–206.
    29. Ross J A, & Kasum C M. (2002). Annu Review Nutrition, 22: pp.19. https://doi.org/10.1146/annurev.nutr.22.111401.144957.
    30. Ness A R., & Powles J W. (1997). International journal of Epidemiology, 26: PP.22-32 https://doi.org/10.1093/ije/26.1.1.
    31. Lu X & Rasco B.A. (2012). Determination of antioxidant content and antioxidant activity in foods using infrared spectroscopy and chemometrics: Food Science Nutrition, R (52): pp. 853-75. https://doi.org/10.1080/10408398.2010.511322.
    32. Khanbabaee K., & Van Ree T. (2001). Tannins: classification and definition. Natural Product,18: pp. 641-649. https://doi.org/10.1039/b101061l.
    33. Hargreaves BJ., Waldron JN., Lopes MA., Gay LS., Saker KE., Cooper WL., Sklan DJ., & Harris PA. (2002). Antioxidant status of horses during two 80 km endurance races. Journal of nutrition, In press. https://doi.org/10.1093/jn/132.6.1781S.
    34. Jez J M., Bowman E., Dixon RA., & Noel JP. (2000). Natural Structured Biology, 7: pp.786. https://doi.org/10.1038/79025.
    35. Feeny P. (1976). Plant apparency and chemical defense. Recent Advance in Phytochemistry. 10: pp. 1-40. https://doi.org/10.1007/978-1-4684-2646-5_1.
    36. Swain T. (1979). Tannins and lignins. In: Herbivores: Their Interaction with Secondary Plant Metabolites, Academic Press, New York, pp. 657-682.
    37. Jachman H., & Bell RHV. (1985). Utilization by elephants of the Brachystegia woodlands of the Kasungu National Park, Malawi. Afri-can Journal of Ecology. 23: pp.245. https://doi.org/10.1111/j.1365-2028.1985.tb00955.x.
    38. Iqbal E., Salim KA., & Lim LBL. (2015). ‘Phytochemical screening, total phenolics and antioxidant activities of bark and leaf extracts of Goniothalamus velutinus (Airy Shaw) from Brunei Darussalam’. Journal of King Saud University - Science, 27(3): pp. 224–232. https://doi.org/10.1016/j.jksus.2015.02.003.
    39. Bell J, Morgan C, Dick G, Reid G. (2012). Distillery feed by-products briefing. An AA211 special Economic study for the Scottish government, SAC Consulting.
    40. Kondoh M., Kamadaa, K., Kuronagaa M., Higashimotoa M., Takiguchia M., Watanabeb Y., & Sato M. (2003). Antioxidant property of metallothionein in fasted mice. Toxicology Letter. 143: pp. 301-306. https://doi.org/10.1016/j.jksus.2015.02.003.
    41. Mansoori A., Nitesh S., Sharad K. D & Tarun K. T. (2020) ‘Phytochemical Characterization and Assessment of Crude Extracts from Lantana camara L. for Antioxidant and Antimicrobial Activity’, Frontiers in Agronomy, 2: pp. 12-21. https://doi.org/10.3389/fagro.2020.582268.
    42. Jain S, Malvi R, and Purviya K J. (2011). Concept of self-medication: A review. International journal of pharmaceutical and biological Archive, 2, pp. 831-836.
    43. Pourmorad F., Hosseinimehr S.J., and Shahabimajd N. (2006). Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants, African Journal of Biotechnology 5 (11), pp. 1142-1145.
    44. Dierenfeld, E S., & Si Traber, M. G. (1992). Vitamin E status of exotic animals compared with livestock and domestics. In: Vitamin E in Health and Disease (Packer, L. & Fuchs, J., eds.), pp. 345-370. Marcel Dekker, New York. https://doi.org/10.1201/9781003418160-34.
    45. Hirano S, Ogawa Y, Kawamura K. (2001). Anisotropy of magnetic susceptibility of ODP Hole 174B-1074A.
    46. Grattagliono I., Vendemiale G., Caraceni P., Domenicali M., Nardo B., Cavallari A., Trevisani F., Bernardi M., & Altomare E. (2000). Starvation impairs antioxidant defenses in fatty livers of rats fed a choline-deficient diet. Journal of nutrition. 130: pp. 2131-2136. https://doi.org/10.1093/jn/130.9.2131.
    47. Martineau LC., Couture A., Spoor D., Benhaddou-Andaloussi A., Harris C., Meddah B, LeducMin BR, Pomroy WE, Hart SP, & Sahlu T. (2004). The effect of short-term consumption of a forage containing condensed tannins on gastro-intestinal nematode parasite infec-tions in grazing goats, Small Ruminant Research, 51: pp. 279. https://doi.org/10.1016/S0921-4488(03)00204-9.
  • Downloads

  • How to Cite

    Aguree, S., Abagale, S. A., & Sackey, I. (2024). Phytochemical profiling and antioxidant potential of aqueous and ethereal extracts of elephants’ feeds in the savannah ecological zone of Ghana. International Journal of Advanced Chemistry, 12(1), 7-15. https://doi.org/10.14419/8kk1n786