Investigation of some useful chemical parameters in Shea tree (Vitelaria paradoxa) nut wastewater collected after extraction of the butter: prospects of Shea butter waste valorization

  • Authors

    • Amofa E. C. K. Tedam University of Technology and Applied Sciences
    • Abagale S. A. Department of Applied Chemistry, C. K. Tedam University of Technology and Applied Sciences. Navrongo, Ghana.
    • Awo O. Department of Applied Biology, C. K. Tedam University of Technology and Applied Sciences. Navrongo, Ghana.
    • Prof. Isaac Sackey 3Biology Department, Faculty of Physical and Biological Sciences, University for Development Studies, Nyankpala campus, Tamale, Ghana.
    • Abagale F.K School of Engineering, University for Development Studies, Nyankpala campus, Tamale, Ghana
    • Twumasi K.S Faculty of Public Health and Allied Sciences, Catholic University College of Ghana, Fiapre, Sunyani, Ghana
    2024-01-15
    https://doi.org/10.14419/f69vy490
  • Shea butter is extracted the nut of Vitellaria paradoxa for both domestic and commercial purposes. Growing extraction and utilization of the butter especially in pharmaceutical, food and cosmetics industries result in large shea butter extraction with resultant large volumes of waste product of unknown content. Analyses of the wastewater/byproduct was carried out to review possibilities of its value addition in production of new products, or otherwise appropriate disposal. Therefore, Atomic Absorption Spectroscopy, physicochemical, and phytochemical screening methods, and extraction were used in the current study to assess antioxidant activity, BOD, calcium, iron, magnesium, lead, nickel, zinc, copper, and phytochemical content of samples of the material from Northern Ghana. The amount of residual oil was also determined. The BOD ranged from 168.00±0.00 to 86.25±6.25 mg O2/kg; Levels of magnesium in the samples ranged from 16.65 - 206.65 mg/kg, calcium from 4.72 - 19.60 mg/kg, iron was 7.75 - 14.0 mg/kg, copper from 0.02 - 0.08 mg/kg, lead from 0.33 - 1.22 mg/kg, nickel from 0.04 - 0.23 mg/kg and zinc from 3.36 - 5.80 mg/kg. Secondary metabolites present included alkaloids, phenolic, saponins, tannins and flavonoids. while residual oil extracted from the sample was between 14.67-6.46 % of the material. Mean pH was 5.95±0.05 - 6.10±0.005, and the mean temperature of the samples ranged from 24.00±0.05 to 25.25±0.05 oC at the time of analyses. From the findings the material has good and diverse content and could be used in cosmetics, pharmaceutical products or organic manure. Otherwise it should be disposed appropriately to safeguard environmental and water pollution.

  • References

    1. Abagale. S.A., Oseni, L.A., Abagale, F.K. and Oseifosu, N. (2016). Chemical Analyses of Shea Butter from Northern Ghana: Assess-ment of Six Industrially Useful Chemical Properties. J of Chem Eng and Chemistry Res. 3(1): 953-961.
    2. Adazabra, A.N., Viruthagiri, G. and Kannan, P. (2017). Influence of spent shea waste addition on the technological properties of fired clay bricks, Waste Management. J of Building Eng. 11:166-177. https://doi.org/10.1016/j.jobe.2017.04.006.
    3. Adomako, D. (1985). Prospects for the development of the Shea nut industry in Ghana. Cocoa Res Inst of Ghana Tech Bull. 11: 8-10.
    4. Anraku, M., Gebicki, J.M., Iohara, D., Tomida, H., Uekama, K., Maruyama, T., Hirayama, F. (2018). Otagiri, M. Antioxidant activities of chitosans and its derivatives in in vitro and in vivo studies. Carbohydr. Polym.. 199: 141–149. https://doi.org/10.1016/j.carbpol.2018.07.016.
    5. Al-Amiery, A.A., Al-Majedy, Y.K., Kadhum, A.A.H. and Mohamad, A.B. (2015). Hydrogen Peroxide Scavenging Activity of Novel Coumarins Synthesized Using Different Approaches. PLoS ONE. 10(7): e0132175. https://doi.org/10.1371/journal.pone.0132175.
    6. Alhassan, E., Agbemava, S.E., Adoo, N.A., Agbodemegbe, V.Y., Bansah, C.Y., Della R., Appiah, G.I., Kombat, E.O. and Nyarko, B.J.B. (2010). Determination of Trace Elements in Ghanaian Shea Butter and Shea Nut by Neutron Activation Analysis (NAA) Research Journal of Applied Sciences, Engineering and Technology. 3(1): 22-25. 2011 ISSN: 2040-746.
    7. Briffa, J., Sinagra, E. and Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 6(9): e04691, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2020.e04691.
    8. Carpena, M. Garcia-Oliveira, P., Pereira, A. G., Soria-Lopez, A., Chamorro, F., Collazo, N., Jarboui, A., Simal-Gandara J. and Prieto, M. A. (2022). Plant Antioxidants from Agricultural Waste: Synergistic Potential with Other Biological Properties and Possible Applications. In: Ekiert, H.M., Ramawat, K.G., Arora, J. (eds) Plant Antioxidants and Health. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-78160-6_35.
    9. Dariusz, K., Świeca, M., Cichocka, J. and Gawlik-Dziki, U. (2013). The phenolic content and antioxidant activity of the aqueous and hydroalcoholic extracts of hops and their pellets. J Inst Brew. 119(3): 103-110.
    10. Dei, H.K., Rose, S.P. and Mackenzie, A.M. (2008). Shea nut (Vitellaria paradoxa) meal as a feed ingredient for poultry. World's Poultry Sci Journ. 63(4): 611-624. https://doi.org/10.1017/S0043933907001651.
    11. Ekin, S., Bayramoglu, M., Goktasoglu, A., Ozgokce, F., Kiziltas. H. (2017). Antioxidant Activity of Aqueous and Ethanol Extracts of Crataegus Meyeri Pojark Leaves and Contents of Vitamin, Trace Element. J Chile Chemistry Society. 62(4). https://doi.org/10.4067/s0717-97072017000403661.
    12. Esmaeili, A.K., Taha, R.M., Mohajer, S. and Banisalam, B. (2015). Antioxidant Activity and Total Phenolic and Flavonoid Content of Various Solvent Extracts from In Vivo and In Vitro Grown Trifolium pratense L. (Red Clover). BioMed Res Intern. Article ID 643285, 11 pgs. https://doi.org/10.1155/2015/643285.
    13. Fernande, G.H., Noel, A., Anita, R.L, Mohamed, S. Martinus, A.J.S. Van B. Nutritional Composition of Shea Products and Chemical Properties of Shea Butter: A Review. Critical Rev in Food Sci and Nutr 2014; 54:5 673-686, https://doi.org/10.1080/10408398.2011.604142.
    14. Finkel, T., Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing, Nature. 2000; 408(6809): 239–247. https://doi.org/10.1038/35041687.
    15. Garti, H., Agbemafle, R. and Mahunu, G.K. (2019). Physicochemical Properties and Fatty Acid Composition of Shea Butter from Ta-male, Northern Ghana. UDS International Journal of Development [UDSIJD] ISSN: 2026-5336. 6(3).
    16. Goreja, W.G. Shea Butter; The Nourishing Properties of Africa’s Best-Kept Secret. TNC International. 2004; Pg. 5. ISBN 9780974296258.
    17. Gulcin I. Antioxidants and Antioxidant Methods: An Updated Review. Archives of Toxicology. Springer; Berlin/Heidelberg, Germany: 2020. https://doi.org/10.1007/s00204-020-02689-3.
    18. Hall, J.B., Aebischer, D.P., Tomlinson, H.F., Osei-Amaning, E., Hindle, J.R. Vitellaria paradoxa: A monograph, School of Agricultural and Forest Sciences Publication No.8, University of Wales, Bangor, (1996). Pp. 8 and105.
    19. Hemet, R.A.S. Principles of Orthomolecularism. Urotext. 2003; Pg. 160. ISBN 9781903737057.
    20. Honfo, F.G., Akissoe, N., Linnemann, A.R., Soumanou, M. and Van Boekel, M.A.J.S. (2014). Nutritional Composition of Shea Prod-ucts and Chemical Properties of Shea Butter: A Review. Critical Rev in Food Sci and Nut. 54(5): 673-686, https://doi.org/10.1080/10408398.2011.604142.
    21. Hafeez, B., Khanif, Y.M. and Saleem, M. Role of Zinc in Plant Nutrition- A Review. 2013. https://doi.org/10.9734/AJEA/2013/2746.
    22. Chigozie, E., Ofoedu, L.Y., Chijioke, M.O., Jude, O. Iwouno, N.O., Kabuo, M.O., Ijeoma, M. A., James S.C., Onyinye, P., Muobike, A.O., Agunbiade, G.S., Gioacchino, B., Charles Odilichukwu, R.O. and Małgorzata, K. (2021). Hydrogen Peroxide Effects on Natural-Sourced Polysacchrides: Free Radical Formation/Production, Degradation Process, and Reaction Mechanism-A Critical Synopsis, Foods. 10(4): 699. https://doi.org/10.3390/foods10040699.
    23. Ikya, J.K., Umenger, L.N. and Iorbee, A. (2013). Effects of Extraction Methods on the Yield and Quality Characteristics of Oils from Shea Nut. J of Food Resource Sci. 2(1): 1-12. https://doi.org/10.3923/jfrs.2013.1.12.
    24. Ionescu, P., Radu, V.M., Deak, G., Ciobotaru, I.E., Marcu, E., Diacu, E. and Pipirigeanu, M. (2019). Bioaccumulation of potentially toxic elements in fish species from aquatic environments located in crowded areas of southern Romania. Technium. 1: 53-58. ISSN: 2668-778X www.techniumscience.com. https://doi.org/10.47577/technium.v1i.19.
    25. Jibreel, M.B., Mumuni, E., Al-Hassan, S. and Baba, N.M. (2013). Shea butter and its processing impacts on the environment in the Tamale Metropolis of Ghana. Int. J. of Dev. and Sust. 2(3): 2008-2019.
    26. Jothi Muniyandi, M. and Jayachitra, (2019). A. Phytochemical Investigation of Barleria Longiflora Linn. F. in Western Ghats Madurai. Life Sci Informatics Pub. 5(3): 700-709.
    27. Jung, T., Höhn, A., Catalgo, B. and Grune, T. (2009). Age-related differences in oxidative protein-damage in young and senescent fi-broblasts. Arch of Biochem and Biophysics. 483: 127-135. https://doi.org/10.1016/j.abb.2008.12.007.
    28. Kasapidou, E., Sossidou, E. and Mitlianga, P. (2018). Fruit and vegetable co-products as functional feed ingredients in farm animal nu-trition for improved product quality. Agriculture. 5: 1020–1034. https://doi.org/10.3390/agriculture5041020.
    29. Kataba-Pendias, A. and Pendias, H. Trace elements in soils and plants; 2001 3rd Edn. CRC, Washington, USA. https://doi.org/10.1201/9781420039900.
    30. Kehrer, J.P. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology. 2000; 149:43-50. https://doi.org/10.1016/S0300-483X(00)00231-6.
    31. Keith, A., Keesling, K., Fitzwater, K.K., Pichte, J. and Houy, D. (2008). Assessment of Cd, Cr and Ag Leaching from Electronics Waste Using Four Extraction Methods. J. of Env Sci and Health: Part A. 43: 1717-1724. https://doi.org/10.1080/10934520802330305.
    32. Keser, S., Celik, S., Turkoglu, S., Yilmaz, Ö., Turkoglu, I. (2012). Hydrogen Peroxide Radical Scavenging and Total Antioxidant Ac-tivity of Hawthorn. Chemistry J. 2(1): 9-12. ISSN 2049-954X.
    33. Koche, D.K., Bhadange, D.G. and Kamble, K.D. (2011). Antimicrobial activity of three medicinal plants. Biosci. Disc. 2(1): 69-71.
    34. Kukulka, M., Eisenberg, C. and Nudurapati, S. (2011). Comparator pH study to evaluate the single-dose pharmacodynamics of dual delayed-release dexlansoprazole 60 mg and delayed-release esomeprazole 40 mg. Clin Exp Gastroenterology. 4: 213–220. https://doi.org/10.2147/CEG.S24063.
    35. Kwak, J., Khang, B., Kim, E. and Kim, H. (2013). Estimation of Biochemical Oxygen Demand Based on Dissolved Organic Carbon, UV Absorption, and Fluorescence Measurements. J of Chem Article ID 243769. 9 pages. https://doi.org/10.1155/2013/243769.
    36. Lagnika, L., Amoussa, M., Adjovi, Y. and Sanni, A. (2012). Antifungal, antibacterial and antioxidant properties of Adansonia digitata and Vitex doniana from Bénin pharmacopeia. J. Pharmacog. and Phytothe. https://doi.org/10.5897/JPP12.006.
    37. Manjula, E. and Mamidala, E. (2013). An ethnobotanical survey of medicinal plants used by traditional healers of Thadvai, Warangal district, Andhra Pradesh, India. IJMRHS. 2(1): 40-46.
    38. Mantle, D., Eddeb, F. and Pickering, A.T. (2000). Comparison of relative antioxidant activities of British medicinal plant species in vitro. J Ethnopharmacol. 72: 47–51. https://doi.org/10.1016/S0378-8741(00)00199-9.
    39. Maranz, S., Kpikpi, W., Weisman, Z., Sauveur, A.D., Chapagain, B. (2004). Nutritional values and indigenous preferences for shea fruits (Vitellaria paradoxa CF Gaertn.) in African Agroforestry parklands. J of Eco Bot. (58): 588-600. https://doi.org/10.1663/0013-0001(2004)058[0588:NVAIPF]2.0.CO;2.
    40. Maranz, S. and Wiesman. Z. (2003). Evidence for indigenous selection and distribution of the Shea tree, Vitellaria paradoxa. Journal of Biogeography. 30. Pp. 1505-1516. https://doi.org/10.1046/j.1365-2699.2003.00892.x.
    41. Martillanes, S., Rocha-Pimienta, J., Delgado-Adámez, J. Agrifood by-products as a source of phytochemical compounds. In: Díaz AV, García-Gimeno RM (eds) Descriptive food science. 2018. Intech Open, pp 43–58. https://doi.org/10.5772/intechopen.79434.
    42. Maydell, H. Butyrospermum parkii (G. Don) Kotschy. Trees and shrubs of the Sahel: Their characteristics and uses. English text re-vised J. Brase Eschborn, Germany: Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ). (1990). Pp. 202-207.
    43. Mégnanou R-M. and Niamke, S. (2015). Improving the optimized shea butter quality: a great potential of utilization for common con-sumers and industrials. Springerplus. 2015; 4: 667. https://doi.org/10.1186/s40064-015-1454-0.
    44. Mégnanou, R-M., Niamke, S., Diopoh, J. (2007). Physicochemical and microbiological characteristics of optimized and traditional shea butters from Côte d’Ivoire. African J. Bioch Res. 1(4):041–047. http://www.academicjournals.org/article/article1380017959.
    45. Mohammedi, Z. and Atik, F. (2011). Impact of solvent extraction type on total polyphenols content and biological activity from Tamarix aphylla (L.) Karst, IJPBS2: 609-615.
    46. Mustapha UN, Muhammad BB. Assessment of Heavy Metal Pollution in Water Collected from River Yobe Nigeria. East African Schol-ars. J of Agric and Life Sci 2020; 3(4):126-131.
    47. Nielsen, S.S. (2017). Water Hardness Testing by Complexometric Determination of Calcium. In: Food Analysis Laboratory Manual. Food Sci Text Series. Springer, Cham. 147-152. https://doi.org/10.1007/978-3-319-44127-6_16.
    48. Nooratiqah, A., Salina, M.R., Maryam, M.R. and Nur A.M.A. (2022). A Review on Cosmetic Formulations and Physicochemical Char-acteristics of Emollient and Day Cream Using Vegetable Based-Wax Ester. Malaysian J of Sci Health & Tech. 8(2). https://doi.org/10.33102/2022291.
    49. Oleszek, M., Kowalska, I., Bertuzzi, T. and Oleszek, W. (2023). Phytochemicals Derived from Agricultural Residues and Their Valua-ble Properties and Applications. Molecules. 28, 342. https://doi.org/10.3390/molecules28010342.
    50. Olife, I.C., Onwualu, A.P. and Jolaoso, M.A. (2013). Developing the Shea Value Chain for Wealth Creation in Nigeria. J of Bio, Agric and Healthcare. 3(5).
    51. Otaiku, A.A. (2016). Shea Based Organic Fertilizer's Impact on Crop Cultivation. Global Shea Conference, Ghana: Enhancing Farm Value. American J of Experimental Agric. 3(2): 374-391. Downloaded: 2/04/2020 from www.globalshea.com.
    52. Packer, L., Cadenas, E. and Davies, K.J.A. (2008). Free radicals and exercise: An introduction. Free Radical Biology and Medicine. 44: 123-125. https://doi.org/10.1016/j.freeradbiomed.2007.05.031.
    53. Perulmalsamy, R. and Ignacimuthu, S. (2000). Antibacterial activity of some folklore medicinal plants used by tribes in western parts of India. J. Ethonopharm. 69: 68-71. https://doi.org/10.1016/S0378-8741(98)00156-1.
    54. Sharma, V., Paliwal, R. and Sharma, S. (2011). Phytochemical analysis and evaluation of antioxidant activities of hydroethanolic ex-tracts of Moringa oleifera lam pods. J Pharm Res. 4(2): 554. https://doi.org/10.1002/tcr.201800094.
    55. Rao, P. and Rathod, V. (2019). Valorization of Food and Agricultural Waste: A Step towards Greener Future. Chemical Record. 19(9):1858-1871. https://doi.org/10.1016/j.foodres.2021.110871.
    56. Reguengo, L.M, Salgaço, M.K., Sivieri, K. and Maróstica Júnior, M.R. (2022). Agro-industrial by-products: Valuable sources of bioac-tive compounds. Food Research International. Volume 152.
    57. Rezvani Pour, H., Mirghaffari, N., Marzban, M. and Marzban, A. (2014). Determination of Biochemical Oxygen Demand (BOD) With-out Nitrification and Mineral Oxidant Bacteria Interferences by Carbonate Turbidimetry. Res J of Pharmaceutical, Bio and Chem Sci. 5(5): 90. ISSN: 0975-8585.
    58. Sarang, J. and Ameeta, A. (2012). Evaluation of antioxidant activity of a polyherbal formulation. Asian Journal of Pharm Clin Res.. 5(2): 194-195.
    59. Sasikumar, V. and Kalaisezhiyen, P. (2014). Evaluation of Free Radical Scavenging Activity of Various Leaf Extracts from Kedrostis foetidissima (Jacq.) Cogn., Biochemistry & Analytical Biochemistry, Biol Chem. 261: 10282-10289. https://doi.org/10.4172/2161-1009.1000150.
    60. Shankar, K.R. (2013). Synthesis, characterization and in vitro study of antioxidant, anticoagulant and anti-inflammatory activities of 4-methyl chromen-2-one derivatives. Intern J of Biological & Pharmaceutical Res. 4(12): 862-871.
    61. Shariff, Z.U.. Modern Herbal Therapy for Common Ailments. Nature Pharmacy Series (Vol. 1). Spectrum Books Limited, Ibadan, Ni-geria. In Association with Safari Books (Export) Ltd, United Kingdom. 2001. Pp. 79-84.
    62. Sindhi, V., Gupta, V., Sharma, K., Bhatnagar, S., Kumari, R., Dhaka, N. (2013). Potential applications of antioxidants-A review. J. Pharm. Res. 7:828–835. https://doi.org/10.1016/j.jopr.2013.10.001.
    63. Singh. M., Yadav, P., Garg, V.K., Sharma, A., Singh, B. and Sharma, H. (2015). Quantification of minerals and trace elements in raw caprine milk using Alame Atomic Absorption Spectrophotometry and Flame Photometry. J Food Sci Tech. 52: 5299–5304. https://doi.org/10.1007/s13197-014-1538-9.
    64. Shea nut Processing. Tony Swetman for Practical Action, Practical Action Technical Brief. 2008.
    65. Sofowora, A.. Screening Plants for Bioactive Agents. In: Medicinal Plants and Traditional Medicinal in Africa. 2nd Ed. Spectrum Books Ltd, Sunshine House, Ibadan, Nigeria, 1993; Pp. 134-156.
    66. Subhash, B., Sanjay, S.R., Raghavendra, S., Sanjeev, K., Vinod, K., Singh, S.K., Yadav, Vivek Y., Rishi, R., Devideen, Y., Kapila, S., Owais, A.W. (2022). Exploring agricultural waste biomass for energy, food and feed production and pollution mitigation: A review. Bioresour Technol. PMID: 35788385, https://doi.org/10.1016/j.biortech.2022.127566.
    67. Trease, G. and Evans, W. Phytochemicals. In: Pharmacognosy, 15th Edition, Saunders Publishers, London, 2002; 42-393.
    68. Valko, M., Morris, H. and Cronin, M. (2005). Metals, toxicity and oxidative stress. Curr Med Chem. 12: 1161-1208. https://doi.org/10.2174/0929867053764635.
    69. Wells, P.G., McCallum, G.P., Chen, C.S., Henderson, J.T., Lee, C.J., Perstin, J., Preston, T.J., Wiley, M.J. (2009). Wong, A.W. Oxida-tive stress in developmental origins of disease: Teratogenesis, neurodevelopmental deficits, and cancer. Toxicological Sciences. 108: 4-18. https://doi.org/10.1093/toxsci/kfn263.
    70. Werner, F., Okemo, P. and Ansorg, R. (1999). Antibacterial activity of East African Medicinal Plants. J. Ethnopharm. 60: 79-84. https://doi.org/10.1016/S0378-8741(97)00128-1.
    71. Xingfeng, Z., Xuehong, Z., Bo, G., Haifang, L., Hanping, X. and Jian, L. (2014). Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of an energy crop, king grass (Pennisetum americanum × P. purpureum). Biomass and Bioenergy. 67:179-187. https://doi.org/10.1016/j.biombioe.2014.04.030.
    72. Yidana, J.A., (2004). Promoting increased investment in the Shea butter industry. The savanna Farmers. Pg.9.
  • Downloads

  • How to Cite

    E., A., S. A., A., O., A., I. , S., F.K , A., & K.S , T. (2024). Investigation of some useful chemical parameters in Shea tree (Vitelaria paradoxa) nut wastewater collected after extraction of the butter: prospects of Shea butter waste valorization. International Journal of Advanced Chemistry, 12(1), 16-25. https://doi.org/10.14419/f69vy490