Optimisation of microwave vacuum pyrolysis conversion of palm oil empty fruit bunches into biochar and bio-oil

  • Authors

    • Ze Wilfrid National Advanced School of Agro-Industrial Sciences, University of Ngaoundere, P.O.Box 454 Nga-oundere, Cameroon
    • Musongo Balike university of Ngaoundere
    • Domga Richard National Advanced School of Agro-Industrial Sciences, University of Ngaoundere, P.O.Box 454 Nga-oundere, Cameroon
    • Obarley Ndip Gilbert university of Yaounde 1
    • Tchatchueng Jean Bosco university of Ngaoundere
  • Biochar; Bio-Oil; Biomass; Microwave Pyrolysis; Optimization.
  • The optimization of the production of Bio-oil and Biochar, from palm oil empty fruit bunches (POEFB) usually thrown as waste, was achieved using microwave vacuum pyrolysis, with expectations of it being a novel source of energy. Moreover, the demand for energy resources is perpetually increasing, due to the rapid increase in population and industrial developments. Surface response methodology via the central composite design was used to investigate the significance of microwave power (w), pyrolysis time (min) and absorbent / biomass ratio (g/g) on the yields in bio-oil and Biochar from POEFB. The optimal yield in bio-oil was 35.05 wt. %, obtained at 14.4 minutes, a ratio of 1: 24 and a power of 382 W and optimum yield in Biochar was 103.75 wt. %, obtained at 1.6 minutes, a ratio of 9:16 and power of 382 W. Thermogravimetric analysis showed the decomposition of hemicellulose at 300 °C, cellulose at 350 °C and lignin from 400 ° C. The greatest effect on the yield in bio-oil from POEFB, was time factor; meanwhile, for the yield in Biochar, the time and absorbent/biomass ratio had the greatest influence.

  • References

    1. A. Srivastava, R. Prasad, Triglycerides-based diesel fuels, Re-newable and Sustainable Energy Reviews, 2000, 4 (2), 111-133. https://doi.org/10.1016/S1364-0321(99)00013-1.
    2. Q. Bu, H. Lei, S. Ren, L. Wang, J. Holladay, Q. Zhang, J. Tang, R. Ruan, Phenol and phenolics lignocellulosic biomass by catalytic mi-crowave pyrolysis, Bioresour Technol, 2011, 102 (13), 7004−7007. https://doi.org/10.1016/j.biortech.2011.04.025.
    3. Fressoz, J.-B., La longue marche de la crise écologique, in Ma-nuel d'Histoire critique, 2014, Paris, France. p. 176-177.
    4. Robin, M., Au Dakota du Nord, les vaches perdent leur queue, Le Monde Diplomatique, 2013, 713, 22-23.
    5. R. H. Moss, J. A. Edmonds, K. A. Hibbard, M. R. Manning, S. K. Rose, D. P. van Vuuren, T. R. Carter, S. Emori, M. Kainuma, T. Kram, G. A. Meehl, J. F. B. Mitchell, N. Nakicenovic, K. Riahi, S. J. Smith, R. J. Stouffer, A. M. Thomson, J. P. Weyant, T. J. Wil-banks, The next generation of scenarios for climate change research and assessment, Nature, 2010, 463 (7282), 747−756. https://doi.org/10.1038/nature08823.
    6. EIA, 2012, Annual Energy outlook 2012, USA, Energy Infor-mation Administration. http://www.eia.gov/forecasts/aeo.
    7. A. Bridgwater, G. Peacocke, Fast pyrolysis processes for bio-mass, Renew Sustain Energy Rev, 2000, 4, 1–73. https://doi.org/10.1016/S1364-0321(99)00007-6.
    8. G.W. Huber, S. Iborra, A. Corma, Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering, Chem. Rev, 2006, 106, 4044–4098. https://doi.org/10.1021/cr068360d.
    9. A.J. Ragauskas, C.K. Williams, B.H. Davison, G. Britovsek, J. Cairney, C.A. ECKERT, The path forward for biofuels and bio-materials, Science, 2006, 311, 484-489 https://doi.org/10.1126/science.1114736.
    10. A. Madi, Analyse des politiques agricoles en Afrique Subsa-harienne, Note de cours de politique agricole, (2011), Faculté d’Agronomie et des Sciences Agricoles, Département d’Economie Rurale, Université de Dschang, Cameroun.
    11. Index Mundi. Ranking of the top 20 palm oil producing coun-tries. [consult in January 2021]. http://www.indexmundi.com.
    12. L. Feintrenie, 2013, Opportunities to responsible land-based investment practices in Central Africa, World Bank conference on land and poverty, Washington DC, USA, 8-11 April.
    13. A. Demirbas, Global renewable energy resources, Energy Sources Part A Recovery Util. Environ. Eff, 2006, 28, 779–792. https://doi.org/10.1080/00908310600718742.
    14. X. Wang, H. Chen, K. Luo, J. Shao, H. Yang, the influence of microwave drying on biomass pyrolysis, Energy Fuels, 2008, 22, 67–74. https://doi.org/10.1021/ef700300m.
    15. Y.F. Huang, W.H. Kuan, S.L. Lo, C.F. Lin, Hydrogen-rich fuel gas from rice straw via microwave-induced pyrolysis. Biore-sour. Technol. 101, 2010, 1968–1973. https://doi.org/10.1016/j.biortech.2009.09.073.
    16. J. P. Robinson, R. Omar, Conventional and microwave-assisted pyrolysis of rapeseed oil for bio-fuel production, J. Anal. Appl. Pyrol, 2014, 105 131-142 https://doi.org/10.1016/j.jaap.2013.10.012.
    17. ASTM E1756 - 08, Standard Test Method for Determination of Total Solids in Biomass. West Conshohocken, PA: ASTM In-ternational; 2015.
    18. ASTM E872 - 82, Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels. West Conshohocken, PA: ASTM International; 2013.
    19. ASTM E17551 - 01, Standard Test Method for Ash in Bio-mass. West Conshohocken, PA: ASTM International; 2015.
    20. A. Dominguez, Y. Fernandez, B. Fidalgo, J.J. Pis, J.A. Menendez, Bio-syngas Production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sew-age sludge. Chemosphere, 2008, 70, 393-403 https://doi.org/10.1016/j.chemosphere.2007.06.075.
    21. D. Bas, I.H. Boyac, Modeling and optimization: Usability of response surface methodology, Journal of Food Engineering, 2007, 78, 836-845. https://doi.org/10.1016/j.jfoodeng.2005.11.024.
    22. F.P.M. Rodriguez, Méthodologie expérimentale et optimisation des Formes pharmaceutiques pour application locale, L.T. DOC, Editor Paris,1996, 237-273.
    23. S.H. Chang, An overview of empty fruit bunch from palm oil as feedstock for bio-oil production, Biomass and Bioenergy, 2014, 62, 174-181 https://doi.org/10.1016/j.biombioe.2014.01.002.
    24. M. Gupta, L.W. Wong, Eugene, Microwaves and metals, John Wiley & Sons (Asia), 2007 https://doi.org/10.1002/9780470822746.
    25. A.A Salema, F.N. Ani, Microwave pyrolysis of palm oil fibres, Journal Mekanikal No.30, 2010, 77-86.
    26. F. Yu, S. Deng, R. Ruan., Physical and chemical properties of bio-oils from microwave pyrolysis of corn stover, Applied Bio-chemistry and Biotechnology, 137–140 (1–12), 2007, 957–970. https://doi.org/10.1007/s12010-007-9111-x.
    27. S. Kerdsuwan, k. Laohalidanond, Renewable energy from palm oil empty fruit bunch. In: Nayeripour M, editor. Renewable energy: trends and applications. Shanghai: Intech, 2011, 123-50 https://doi.org/10.5772/25888.
    28. Q. Zhang, J. Chang, T. Wang, Y. Xu, Review of biomass pyrolysis oil properties and upgrading research, Energy Conversion and Man-agement, 48 (1), 2007, 87–92. https://doi.org/10.1016/j.enconman.2006.05.010.
    29. G. Almeida, J.O. Brito, P. Perre, Alterations in energy properties of eucalyptus wood and bark subjected to torrefaction : The potential of mass loss as a synthetic indicator. Bioresource Technology, 101, No 24, 2010, 9778-9784. https://doi.org/10.1016/j.biortech.2010.07.026.
    30. P. Rousset, C. Lapierre, B. Pollet, W. Quirino, P. Perre, Effect of severe thermal treatment on spruce and beech wood lignins. Annals of Forest Science, 66, No 1, 2009, 110. https://doi.org/10.1051/forest/2008078.
    31. H. Yang, R. Yan, H. Chen, D. H. Lee, C. Zheng, Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis, Fuel, 86 (12–13), 2007, 1781–1788. https://doi.org/10.1016/j.fuel.2006.12.013.
    32. W.T. Tsai, M.K. Lee and Y.M. Chang, Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J. Anal. Appl. Pyrol., 76, 2006, 230-237. https://doi.org/10.1016/j.jaap.2005.11.007.
  • Downloads

  • How to Cite

    Wilfrid , Z. ., Balike, M. ., Richard , D. ., Gilbert , O. N. ., & Jean Bosco, T. (2024). Optimisation of microwave vacuum pyrolysis conversion of palm oil empty fruit bunches into biochar and bio-oil. International Journal of Advanced Chemistry, 12(1), 51-61. https://doi.org/10.14419/jjna4w92