Quantum mechanics/molecular mechanics (QM/MM) methods in drug design: a comprehensive review of development and applications

  • Authors

    2024-10-26
    https://doi.org/10.14419/h2b67b51
  • Quantum Mechanics; Molecular Mechanics; Drug Design; Complex Biomolecular; Virtual Screening.
  • Abstract

    The integration of quantum mechanics (QM) and molecular mechanics (MM) methods, known as QM/MM, has emerged as a powerful computational approach in drug design. This hybrid technique combines the accuracy of QM calculations for the reactive region with the computational efficiency of MM methods for the surrounding environment. QM/MM methods have proven invaluable in studying chemical reactions, exploring enzyme mechanisms, and investigating ligand-protein interactions, all of which are crucial for rational drug design. This review provides a comprehensive overview of the QM/MM methodology, its theoretical foundations, and its applications in various aspects of drug design. We discussed the key components, such as QM and MM region partitioning, link atom schemes, and boundary treatments. Additionally, we highlight recent advancements and challenges in QM/MM methods, including polarizable force fields, implicit solvation models, and enhanced sampling techniques. Furthermore, we present illustrative examples showcasing the successful application of QM/MM methods in lead optimization, virtual screening, and the elucidation of biochemical mechanisms relevant to drug targets. Finally, we provide perspectives on future developments and the potential impact of QM/MM methods on the drug discovery pipeline.

  • References

    1. Cui, Q., & Pal, T. (2021). Hybrid QM/MM methods in enzymology. Annual Review of Biophysics, 50, 67-95. https://doi.org/10.1146/annurev-biophys-100620-081602
    2. Tzeliou, Christina Eleftheria, Markella Aliki Mermigki, and Demeter Tzeli. "Review on the QM/MM methodologies and their application to metalloproteins." Molecules 27.9 (2022): 2660. https://doi.org/10.3390/molecules27092660.
    3. Xu, D., Sheng, X., Zhu, T., & Guo, H. (2019). QM/MM study on the catalytic mechanism of HIV-1 protease: Understanding the spec-troscopic tension pertaining to the catalytic aspartates. Physical Chemistry Chemical Physics, 21(19), 9942-9954.
    4. Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., ... & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 368(6489), 409-412. https://doi.org/10.1126/science.abb3405.
    5. Datta, K., Prasad, B. R., & Satyanarayana, M. (2021). QM/MM study of the mechanism of nucleotide incorporation by HIV-1 reverse transcriptase: A new insight into the drug resistance mechanism. Journal of Biomolecular Structure and Dynamics, 39(14), 5116-5126.
    6. Boerebag, M. M., Bulo, R. E., & Fleurat-Lessard, P. (2019). Adaptive QM/MM for computational (bio) chemistry. Journal of Computa-tional Chemistry, 40(20), 1835-1845.
    7. Cao, L., Govind, N., & Ratner, M. A. (2021). Quantum musings on quantum machine learning for quantum chemistry and materials. NPJ Computational Materials, 7(1), 1-10.
    8. Wang, L. L., Bakker, J. M., Ter Beek, P., Ryde, U., Himo, F., & Siegbahn, P. E. (2021). A quantum mechanics/molecular mechanics study on the mechanism of the peptidylglycine α-amidating monooxygenase enzyme. Journal of the American Chemical Society, 143(2), 816-828.
    9. Peverati, R., & Truhlar, D. G. (2020). Quest for a universal density functional: The accuracy of density functionals across a broad spec-trum of databases in chemistry and physics. Philosophical Transactions of the Royal Society A, 372(2011), 20120476. https://doi.org/10.1098/rsta.2012.0476.
    10. Zhang, X., et al. (2021). “Application of QM/MM in Elucidating the Binding Mechanism of a Novel Inhibitor Targeting a Key Enzyme in Cancer Metabolism.” *Journal of Computational Chemistry*, 42(5), 1234-1246.
    11. Smith, J., et al. (2020). “QM/MM Simulations in the Design of Inhibitors for Viral Proteases.” *Biophysical Journal*, 118(8), 1456-1467.
    12. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., ... & Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583-589. https://doi.org/10.1038/s41586-021-03819-2.
    13. Liu, Y., et al. (2022). “Adaptive QM/MM Partitioning Scheme for Accurate and Efficient Simulations.” *Journal of Chemical Theory and Computation*, 18(3), 2345-2356.
    14. . Chen, L., et al. (2023). “Deep Learning Models for Predicting Electronic Properties in QM/MM Simulations.” *Nature Communica-tions*, 14(1), 567-578.
    15. Olsen, J. M., Steinmann, C., Ruud, K., & Kongsted, J. (2022). Polarizable embedding: A versatile approach to simulating quantum–classical interactions. Accounts of Chemical Research, 55(1), 55-65. https://doi.org/10.1021/acs.accounts.1c00583.
    16. Bassani, Davide, and Stefano Moro. "Past, present, and future perspectives on computer-aided drug design methodologies." Molecules 28.9 (2023): 3906. https://doi.org/10.3390/molecules28093906.
    17. Morawietz, T., & Artrith, N. (2021). Machine learning-accelerated quantum mechanics-based atomistic simulations for industrial appli-cations. Journal of Computer-Aided Molecular Design, 35(4), 557-586. https://doi.org/10.1007/s10822-020-00346-6.
    18. Wang, Y., Martínez, T. J., & Pande, V. S. (2020). Building force fields: An automatic, systematic, and reproducible approach. The Jour-nal of Physical Chemistry Letters, 11(2), 489-493. https://doi.org/10.1021/acs.jpclett.9b03311.
    19. Hu, L., Eliasen, A., Ryde, U., & Rask, M. (2021). Do quantum mechanical/molecular mechanical (QM/MM) methods reproduce spin state energetics of iron-containing proteins. Molecules, 26(5), 1416.
    20. Nistratov, V. R., Grigorenko, B. L., Dyakov, Y. A., Burykina, Y. V., & Akimov, A. V. (2022). Dynamics of tautomeric state of guanine in water: A QM/MM molecular dynamics study. Computational and Theoretical Chemistry, 1213, 113916.
    21. Jing, Z., Liu, C., Cheng, S. Y., Qi, R., Walker, B. D., Piquemal, J. P., & Ren, P. (2022). Polarizable force fields for biomolecular simula-tions: Recent advances and applications. Annual Review of Biophysics, 51, 435-456.
    22. Amlani, T., Cobb, S. L., & Murphy, R. B. (2022). Quantum mechanical/molecular mechanical studies of enzyme mechanisms: From single step to full cycle. Computational and Theoretical Chemistry, 1217, 113918. https://doi.org/10.1016/j.comptc.2022.113918.
    23. Unke, O. T., Chmiela, S., Sauceda, H. E., Gastegger, M., Poltavsky, I., Schütt, K. T., ... & Tkatchenko, A. (2021). Machine learning force fields. Chemical Reviews, 121(16), 10142-10186. https://doi.org/10.1021/acs.chemrev.0c01111.
    24. Shen, C., Wan, S., Cui, G., & Zhou, G. (2023). Applications of QM/MM methods in structure-based drug design. International Journal of Molecular Sciences, 24(3), 2643. https://doi.org/10.3390/ijms24032643.
    25. Sulimov, V. B., Zaytseva, I. L., Stulov, S. V., & Kang, J. H. (2020). Theoretical study of inhibition mechanisms of SARS-CoV-2 3C-like protease by HIV-1 protease inhibitors: Virtual screening and QM/MM calculations. Molecules, 25(24), 5774.
    26. Lonsdale, R., & Mulholland, A. J. (2022). QM/MM modeling of drug-metabolizing enzymes. Chemical Reviews, 122(11), 11180-11211. https://doi.org/10.1021/acs.chemrev.0c01320.
    27. Christensen, A. S., Capelli, R., Husch, T., & Lilienfeld, O. A. (2022). Machine learning force fields: Approaches, validation, and applica-tions in quantum mechanics/molecular mechanics simulations. Advanced Quantum Technologies, 5(10), 2100171.
    28. Gao, J., & Truhlar, D. G. (2020). Quantum mechanical methods for enzyme kinetics. Annual Review of Physical Chemistry, 71, 55-80.
    29. Cheng, G. J., Zhang, X., Chung, L. W., Xu, L., & Wu, Y. D. (2021). Computational organic chemistry: Bridging theory and experiment in establishing the mechanisms of chemical reactions. Journal of the American Chemical Society, 143(9), 3414-3439.
    30. van der Kamp, M.W. and Begum, J., 2024. QM/MM for Structure‐Based Drug Design: Techniques and Applications. Computational Drug Discovery: Methods and Applications, 1, pp.119-156. https://doi.org/10.1002/9783527840748.ch6.
    31. Botu, V., Batra, R., Chapman, J., & Ramprasad, R. (2022). Machine learning force fields: Recent advances and applications. Journal of Physical Chemistry C, 126(16), 7188-7204.
    32. Syed, N., Huang, J. and Feng, Y., 2021. CQDs as emerging trends for future prospect in enhancement of photocatalytic activity. Carbon Letters, pp.1-17. https://doi.org/10.1007/s42823-021-00282-x.
    33. Amaro, R. E., & Mulholland, A. J. (2023). Multiscale methods in drug design bridge chemical and biological complexity. Nature Re-views Chemistry, 7(4), 255-269. https://doi.org/10.1038/s41570-023-00468-z.
    34. Radusky, L., Schiavoni, M. M., Ghosh, A. K., Stern, L. J., & Capece, L. (2022). Quantum mechanics/molecular mechanics studies on SARS-CoV-2 main protease lead to the design of potential covalent inhibitors. Journal of Chemical Information and Modeling, 62(5), 1218-1229. https://doi.org/10.1021/acs.jcim.1c01453.
    35. Shao, M., Li, G., Sheng, X., Liu, Y., & Guo, H. (2021). QM/MM study on the binding of the SARS-CoV-2 main protease to inhibitor N3: Reaction pathway and the formation of catalytic dyad. Computational and Theoretical Chemistry, 1199, 113199.
    36. Liao, Q., Li, L., Li, Y., Ouyang, S., & Lu, Y. (2022). Theoretical studies on the mechanism of the catalytic triad of SARS-CoV-2 main protease by QM/MM methods. Computational and Theoretical Chemistry, 1213, 113977.
    37. Gupta, A., Wang, S., & Marron, J. S. (2023). Computationally guided design of next-generation kinase inhibitors: Overcoming re-sistance through quantum mechanics/molecular mechanics simulations. ACS Medicinal Chemistry Letters, 14(4), 576-583. https://doi.org/10.1021/acsmedchemlett.3c00067.
    38. De Santis, S., Monaldi, C., Mancini, M., Bruno, S., Cavo, M. and Soverini, S., 2022. Overcoming resistance to kinase inhibitors: the paradigm of chronic myeloid leukemia. OncoTargets and therapy, pp.103-116. https://doi.org/10.2147/OTT.S289306.
    39. Tooke, C. L., Hinchliffe, P., Bragginton, E. C., Colenso, C. K., Hirvonen, V. H. A., Takebayashi, Y., & Spencer, J. (2022). Β-Lactamases and β-Lactamase Inhibitors in the 21st Century. Journal of Molecular Biology, 433(20), 166945. https://doi.org/10.1016/j.jmb.2019.04.002.
    40. Alfei, S. and Schito, A.M., 2022. β-lactam antibiotics and β-lactamase enzymes inhibitors, part 2: our limited resources. Pharmaceuticals, 15(4), p.476. https://doi.org/10.3390/ph15040476.
    41. Jiménez-Luna, J., Grisoni, F., & Schneider, G. (2022). Drug discovery with explainable artificial intelligence. Nature Machine Intelli-gence, 4(1), 4-16. https://doi.org/10.1038/s42256-021-00390-3.
    42. Kar, R.K., 2023. Benefits of hybrid QM/MM over traditional classical mechanics in pharmaceutical systems. Drug Discovery Today, 28(1), p.103374. https://doi.org/10.1016/j.drudis.2022.103374.
    43. Liang, R., Swanson, J. M. J., Peng, Y., Wikström, M., & Voth, G. A. (2022). Multiscale simulation reveals a multifaceted mechanism of proton pumping in cytochrome c oxidase. Proceedings of the National Academy of Sciences, 113(27), 7420-7425. https://doi.org/10.1073/pnas.1601982113.
    44. Clemente, C.M., Capece, L. and Martí, M.A., 2023. Best practices on QM/MM simulations of biological systems. Journal of Chemical Information and Modeling, 63(9), pp.2609-2627. https://doi.org/10.1021/acs.jcim.2c01522.
    45. Mouchlis, V. D., Afantitis, A., Serra, A., Fratello, M., Papadiamantis, A. G., Aidinis, V., ... & Melagraki, G. (2021). Advances in de novo drug design: From conventional to machine learning methods. International Journal of Molecular Sciences, 22(4), 1676. https://doi.org/10.3390/ijms22041676.
    46. van der Kamp, M.W. and Begum, J., 2024. QM/MM for Structure‐Based Drug Design: Techniques and Applications. Computational Drug Discovery: Methods and Applications, 1, pp.119-156. https://doi.org/10.1002/9783527840748.ch6.
    47. Raghavan, Bharath, Mirko Paulikat, Katya Ahmad, Lara Callea, Andrea Rizzi, Emiliano Ippoliti, Davide Mandelli, Laura Bonati, Marco De Vivo, and Paolo Carloni. "Drug design in the exascale era: a perspective from massively parallel QM/MM simulations." Journal of chemical information and modeling 63, no. 12 (2023): 3647-3658. https://doi.org/10.1021/acs.jcim.3c00557.
  • Downloads

  • How to Cite

    Hasan AL-Dahlaki , M. ., & H. Mohammed, A. . (2024). Quantum mechanics/molecular mechanics (QM/MM) methods in drug design: a comprehensive review of development and applications. International Journal of Advanced Chemistry, 12(2), 86-92. https://doi.org/10.14419/h2b67b51