A comprehensive review of emerging contaminants in water sources
-
2024-10-26 https://doi.org/10.14419/cj1jks32 -
Water Quality; Emerging Contaminants; Pharmaceuticals; Environmental Impact; Detection Methods. -
Abstract
The quality of water is crucial for the health of both the environment and humans, but new challenges from emerging contaminants threaten this vital resource. This paper reviews the origin and significance of water quality issues linked to emerging pollutants, including pharmaceuticals, personal care products, endocrine-disrupting chemicals, per- and polyfluoroalkyl substances, microplastics, pesticides, and industrial chemicals. These persistent chemicals exhibit complex behaviors and have the potential to impact ecological systems and human health significantly. The review comprehensively examines the pathways through which these pollutants enter water systems, such as agricultural runoff, industrial discharges, and urban stormwater runoff. It also covers the latest techniques for identifying these pollutants, emphasizing recent advancements in sampling methods and analytical techniques while highlighting the challenges of detecting contaminants at low concentrations. The discussion includes the environmental behavior of these contaminants, focusing on their properties, degradation mechanisms, and bioaccumulation potential. It further explores the impacts of these emerging contaminants on ecosystems and human health, examining both conventional and innovative treatment technologies. Additionally, the review identifies current research gaps and future trends in the analysis of new pollutants. It underscores the importance of public awareness, effective communication strategies, and innovative approaches to environmental protection.
-
References
- Ma, Y., & Wang, W. (2018). Emerging contaminants in wastewater treatment plants: A review of the latest advances. Journal of Envi-ronmental Sciences, 68, 1-20.
- Marsh, K. N., & Reeve, J. N. (2014). Understanding the environmental impacts of biofuels. Renewable and Sustainable Energy Re-views, 32, 331-340.
- Morse, G. K., & Lester, J. N. (2013). Advanced technologies for the treatment of industrial wastewater. Journal of Environmental En-gineering, 139(10), 1429-1439.
- Norton, S. A., & LaLiberte, M. (2010). Long-term changes in the environment: A review. Environmental Science & Policy, 13(1), 39-48.
- O’Brien, J. M., Kiefer, R., & Liao, T. (2013). Advances and limitations in high-resolution analytical techniques for environmental monitoring. Analytical Chemistry, 85(1), 7-16.
- Parker, L. M., Lattimer, G. A., & Turner, L. D. (2010). Public awareness and environmental policy. Environmental Management, 46(2), 137-150.
- Rudel, R. A., & Perovich, L. J. (2015). The role of urbanization in the spread of chemical contaminants. Annual Review of Public Health, 36(1), 367-384.
- Smith, R. D., & Tangen, K. (2018). Environmental pollution and its effects on ecosystem services. Ecological Indicators, 91, 229-242.
- Sunderland, E. M. (2007). Mercury exposure from domestic and industrial sources in the environment. Environmental Science & Technology, 41(13), 3705-3714.
- Stokstad, E. (2017). The state of environmental contamination: A global perspective. Science, 355(6321), 930-934
- USGS. (2021). Contaminants of emerging concern in the environment. U.S. Geological Survey. Retrieved from https://www.usgs.gov/centers/national-water-quality-assessment-program/science/contaminants-emerging-concern-environment
- Wang, X., Zhang, Y., Zhang, S., & Li, Y. (2019). Membrane filtration technologies for water treatment. Water Research, 158, 470-484.
- Wang, Y., & Wu, X. (2019). Treatment technologies for emerging contaminants: A review. Science of The Total Environment, 676, 337-352.
- Xie, Y., Zhang, H., & Xu, X. (2017). Nanomaterials for environmental remediation. Journal of Environmental Management, 204, 167-175.
- Zhang, X., Zhu, J., & Li, C. (2018). Electrochemical methods for environmental contaminant removal. Environmental Science & Tech-nology, 52(12), 6914-6925.
- Zhou, X., Xu, J., & Wang, X. (2022). Strategies for reducing environmental contamination by pharmaceuticals. Environmental Pollu-tion, 300, 118884.
- Surana, D., Gupta, J., Sharma, S., Kumar, S., Ghosh, P. (2022). A review on advances in removal of endocrine disrupting compounds from aquatic matrices: future perspectives on utilization of agri-waste based adsorbents. Science of The Total Environment, 826, 154129. https://doi.org/10.1016/j.scitotenv.2022.154129.
- O’Connor, J., Bolan, N.S., Kumar, M., Nitai, A.S., Ahmed, M.B., Bolan, S.S., Vithanage, M., Rinklebe, J., Mukhopadhyay, R., Sri-vastava, P., Sarkar, B. (2022). Distribution, transformation and remediation of poly-and per-fluoroalkyl substances (PFAS) in wastewater sources. Process Safety and Environmental Protection, 164, 91–108. https://doi.org/10.1016/j.psep.2022.06.002.
- Büning, B., Rechtenbach, D., Behrendt, J., Otterpohl, R. (2021). Removal of emerging micropollutants from wastewater by nanofiltra-tion and biofilm reactor (MicroStop). Environmental Progress & Sustainable Energy, 40, e13587. https://doi.org/10.1002/ep.13587.
- Sarkar, B., Dissanayake, P.D., Bolan, N.S., Dar, J.Y., Kumar, M., Haque, M.N., Mukhopadhyay, R., Ramanayaka, S., Biswas, J.K., Tsang, D.C., Rinklebe, J. (2022). Challenges and opportunities in sustainable management of microplastics and nanoplastics in the en-vironment. Environmental Research, 207, 112179. https://doi.org/10.1016/j.envres.2021.112179.
- Hena, S., Gutierrez, L., Croué, J.P. (2021). Removal of pharmaceutical and personal care products (PPCPs) from wastewater using mi-croalgae: a review. Journal of Hazardous Materials, 403, 124041. https://doi.org/10.1016/j.jhazmat.2020.124041.
- Priya, A.K., Gnanasekaran, L., Rajendran, S., Qin, J., Vasseghian, Y. (2022). Occurrences and removal of pharmaceutical and personal care products from aquatic systems using advanced treatment-a review. Environmental Research, 204, 112298. https://doi.org/10.1016/j.envres.2021.112298.
- Sooriyakumar, P., Bolan, N., Kumar, M., Singh, L., Yu, Y., Li, Y., Weralupitiya, C., Vithanage, M., Ramanayaka, S., Sarkar, B., Wang, F. (2022). Biofilm formation and its implications on the properties and fate of microplastics in aquatic environments: a review. Journal of Hazardous Materials Advances, 6, 100077. https://doi.org/10.1016/j.hazadv.2022.100077.
- Nie, J., Sun, Y., Zhou, Y., Kumar, M., Usman, M., Li, J., Shao, J., Wang, L., Tsang, D.C.W. (2020). Bioremediation of water containing pesticides by microalgae: mechanisms, methods, and prospects for future research. Science of The Total Environment, 707, 136080. https://doi.org/10.1016/j.scitotenv.2019.136080.
- Rogowska, J., Cieszynska-Semenowicz, M., Ratajczyk, W., Wolska, L. (2020). Micropollutants in treated wastewater. Ambio, 49, 487–503. https://doi.org/10.1007/s13280-019-01219-5.
- Li, N., Li, J., Zhang, Q., Gao, S., Quan, X., Liu, P., Xu, C. (2021). Effects of endocrine disrupting chemicals in host health: three-way interactions between environmental exposure, host phenotypic responses, and gut microbiota. Environmental Pollution, 271, 116387. https://doi.org/10.1016/j.envpol.2020.116387.
- La Merrill, M.A., Vandenberg, L.N., Smith, M.T., Goodson, W., Browne, P., Patisaul, H.B., Guyton, K.Z., Kortenkamp, A., Cogliano, V.J., Woodruff, T.J., Rieswijk, L., Sone, H., Korach, K.S., Gore, A.C., Zeise, L., Zoeller, R.T. (2020). Consensus on the key character-istics of endocrine-disrupting chemicals as a basis for hazard identification. Nature Reviews Endocrinology, 16, 45–57. https://doi.org/10.1038/s41574-019-0273-8.
- Gmurek, M., Olak-Kucharczyk, M., Ledakowicz, S. (2017). Photochemical decomposition of endocrine disrupting compounds – a re-view. Chemical Engineering Journal, 310, 437–456. https://doi.org/10.1016/j.cej.2016.05.014.
- Naidu, R., Wong, M.H., Chapman, J., Nogueira, R., Harter, T., Merrington, G., Naidu, S. (2021). Emerging contaminants in the envi-ronment: Risk-based analysis for better management. Chemosphere, 268, 128734.
- Das, S., Kumar, S., Torres, M.A., Kumar, M., Nogueira, R., Larsen, A.W., Singh, L. (2021). Progress and prospects in marine biofoul-ing and its mitigation strategies. Science of The Total Environment, 768, 144985.
- Liu, F., He, W., Zhang, Z., Zhang, Z., Guo, Z., Li, J., Tang, W., Naidu, R., Guan, Y. (2022). Efficient electrochemical remediation of antibiotics in wastewater: mechanisms, performance, and influencing factors. Journal of Environmental Management, 309, 114632.
- Sun, M., Li, P., Gong, K., Wang, Z., Liu, H., Jiang, W., Wang, Q. (2022). Towards the removal of heavy metals and metalloids from water using MOFs and COFs: an overview. Microporous and Mesoporous Materials, 335, 111779.
- Leusch, F.D.L., Snyder, S.A., Brown, R.A., Ma, Z., Williams, M., Myers, A., Knappe, D.R.U. (2022). Comparison of full- and bench-scale GAC adsorbers for the removal of per- and poly-fluoroalkyl substances (PFASs). Environmental Science: Water Research & Technology, 8, 95-108.
- Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., & Wang, X. C. (2015). Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. Journal of Hazardous Materials, 283, 234-267.
- Ahmad, K. B., Muhammad, M. A., Bashir, A.-A., Abubakar, M. Y., Adam, A. B., & Victoria, A. I. (2024). Investigating the bioactive compounds and characterization of Guiera senegalensis aqueous extract. Earthline Journal of Chemical Sciences, 11(3), 405-416.
- Barzen-Hanson, K. A., Field, J. A., & Brownawell, B. J. (2017). Perfluoroalkyl substances in the environment: Implications for the aquatic food web. Environmental Science & Technology, 51(8), 4461-4470.
- Benbrook, C. M. (2016). Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences Europe, 28(1), 3. Besseling, E., Lukashort, B., & Koelmans, A. A. (2015). Nanoplastic affects marine microalgae: A case study. Environmental Sci-ence & Technology, 49(9), 5296-5302. https://doi.org/10.1186/s12302-016-0070-0.
- Boxall, A. B. A., et al. (2012). Are veterinary medicines causing environmental risks? Environmental Science & Technology, 46(2), 421-435.
- Brown, S. J., Anderson, D. M., & Kinnear, R. (2015). The impact of hydrochloric acid emissions on the environment. Environmental Science & Technology, 49(5), 2872-2880.
- EPA. (2020). PFAS and Your Drinking Water. U.S. Environmental Protection Agency. Retrieved from
- Gigault, J., Halle, A., Rogers, N., & Riviere, J. (2018). Nano plastics in the environment: A review of the knowledge and perspectives. Environmental Science & Technology, 52(21), 13381-13395.
- Gore, A. C., Chappell, V. A., Fenton, S. E., Flaws, J. A., Nadal, A., Prins, G. S., ... & Zoeller, R. T. (2015). EDC-2: The Endocrine So-ciety's second scientific statement on endocrine-disrupting chemicals. Endocrine Reviews, 36(6), E1-E150. https://doi.org/10.1210/er.2015-1093.
- Herbstman, J. B., Sjödin, A., Kurzon, M., Lederman, S. A., Jones, R. S., Rauh, V., ... & Perera, F. (2010). Prenatal exposure to PBDEs and neurodevelopment. Environmental Health Perspectives, 118(5), 712-719. https://doi.org/10.1289/ehp.0901340.
- Hernandez, E., Esiukova, E., & Figueiredo, F. (2017). Microplastic pollution from personal care products. Science of the Total Envi-ronment, 586, 1221-1226.
- Hinderliter, P. M., Minard, K. R., & Seaman, S. R. (2019). Nano-sized plastic particles in the marine environment: Potential impacts and mitigation strategies. Marine Pollution Bulletin, 142, 189-197. https://doi.org/10.1016/j.marpolbul.2019.03.022.
- Jacobson, J. L., & Jacobson, S. W. (1996). Intellectual impairment in children exposed to polychlorinated biphenyls in utero. New England Journal of Medicine, 335(11), 783-789. https://doi.org/10.1056/NEJM199609123351104.
- Kwiatkowski, C. F., Andrews, D. Q., & Bruton, T. A. (2013). Fluorinated compounds in the environment: New findings and emerging concerns. Environmental Science & Technology, 47(6), 2095-2104.
- Lindstrom, A. B., Strynar, M. J., & Olson, B. L. (2011). Polyfluorinated compounds in the environment. Environmental Science & Technology, 45(11), 4571-4578. https://doi.org/10.1021/es2011622.
- Ma’aruf M. A, Mustapha S, Giriraj T, Muhammad N. S, Habib M. U, et al.. Sustainable Synthesis Strategies: Biofabrication's Impact on Metal and Metal Oxide Nanoparticles. African Journal of Environment and Natural Science Research, 2024, 7 (2), pp.229 - 252. ⟨10.52589/ajensr-jtfpyhuk⟩. ⟨hal-04628697⟩ https://doi.org/10.52589/AJENSR-JTFPYHUK.
- Ma’a ruf, Abdulmumin Muhammad, Mustapha Sulaiman, Habib Muhammad Usman, Saifullahi Lawan Panda, et al.. Water Quality As-sessment and Health Implications: A Study of Kano Metropolis, Nigeria. Journal of Science and Technology, 2024, 9 (6), pp.33-52. ⟨10.46243/jst.2024.v9.i6.pp33-52. ⟨hal-04622816⟩
- Matthiessen, P., Arnold, D., Johnson, I., Pepper, T. G., Pottinger, T. G., & Pulman, K. G. (2018). Contaminants and European freshwa-ter fish. Fisheries Research, 193, 1-10.
- Metcalfe, C. D., Koenig, B. G., Bennie, D. T., Servos, M., Ternes, T. A., & Hirsch, R. (2003). Occurrence of neutral and acidic drugs in the effluents of Canadian sewage treatment plants. Environmental Toxicology and Chemistry, 22(12), 2872-2880. https://doi.org/10.1897/02-469.
- Murray, T. J., Maffini, M. V., Ucci, A. A., Sonnenschein, C., & Soto, A. M. (2007). Induction of mammary gland ductal hyperplasias and carcinoma in situ following fetal bisphenol A exposure. Reproductive Toxicology, 23(3), 383-390. https://doi.org/10.1016/j.reprotox.2006.10.002.
- Mustapha S., Habib M. U., Ma’aruf A. M., Mustapha A., Shehu H., et al.. Sustainable Technique for Neem (Azadirachta Indica) Seed Oil Extraction: Optimization and Characterization. African Journal of Environment and Natural Science Research, 2024, 7 (2), pp.218-228. ⟨10.52589/AJENSR-5H1FVLHR⟩. ⟨hal-04622783⟩ https://doi.org/10.52589/AJENSR-5H1FVLHR.
- Pal, A., Gin, K. Y.-H., Lin, A. Y.-C., & Reinhard, M. (2010). Impacts of emerging organic contaminants on freshwater resources: Re-view of recent occurrences, sources, fate and effects. Science of the Total Environment, 408(24), 6062-6069. https://doi.org/10.1016/j.scitotenv.2010.09.026.
- Richardson, S. D., & Ternes, T. A. (2014). Water analysis: Emerging contaminants and current issues. Analytical Chemistry, 86(6), 2813-2848. https://doi.org/10.1021/ac500508t.
- Schultz, M. M., Barofsky, D. F., & Field, J. A. (2006). Environmental occurrence and fate of perfluorinated alkyl acids. Environmental Science & Technology, 40(5), 1538-1547.
- Talsness, C. E., Andrade, A. J. M., Kuriyama, S. N., Taylor, J. A., & vom Saal, F. S. (2008). Components of plastic: Experimental studies and human health risks. Environmental Health Perspectives, 116(7), 887-895
- Tovar-Sánchez, A., Sánchez-Quiles, D., Basterretxea, G., Benedé, J. L., Chisvert, A., Salvador, A. & Blasco, J. (2013). Sunscreen products as emerging pollutants to coastal waters. PLoS ONE, 8(6), e65451. https://doi.org/10.1371/journal.pone.0065451.
- Vieira, V. M., Hoffman, K., & Weber, A. M. (2015). Perfluoroalkyl acids and liver function biomarkers in a highly exposed communi-ty. Environmental Health Perspectives, 123(12), 1318-1324.
- Wang, Z., DeWitt, J. C., Higgins, C. P., & Cousins, I. T. (2013). A critical review of the environmental fate, human exposure, and health effects of perfluoroalkyl substances. Environmental Science & Technology, 47(19), 10619-10641.
- Woodruff, T. J., Zota, A. R., & Schwartz, J. M. (2011). Environmental chemicals in pregnant women in the United States: NHANES 2003–2004. Environmental Health Perspectives, 119(2), 261-267. https://doi.org/10.1289/ehp.1002727.
- Yamamoto, H., Tamura, I., Hirata, Y., Kato, J., Katsuhara, M., & Yamamoto, A. (2006). Aquatic toxicity and ecological risk assess-ment of seven parabens: Individual and additive approach. Science of the Total Environment, 410-411, 102-111. https://doi.org/10.1016/j.scitotenv.2011.09.040.
-
Downloads
-
How to Cite
Abdulmumin Muhammad , M. ., Muhd Shafi’i , A. ., Musa Shuaibu , A. ., Usman Alhaji , U. . ., Rabilu Abdullahi , S. ., & Abdurrashid , I. . (2024). A comprehensive review of emerging contaminants in water sources. International Journal of Advanced Chemistry, 12(2), 93-105. https://doi.org/10.14419/cj1jks32