Comparative analyses of Nigerian and US corn Stalks, using PY-GC/MS

Authors

  • Anthonia E. Eseyin Department of sustainable Bio-prod;, Mississippi State University. USA
  • El Barbary Hassan Department of sustainable Bio-products, Mississippi State University. USA
  • Emad, M El-Giar School of Sciences, University of Louisiana at Monroe, USA

DOI:

https://doi.org/10.14419/ijac.v3i1.4328

Keywords:

Bio-Oil, Fast pyrolysis, Nigerian corn stalks, US corn stalks, PY-GC/MS, and Valuable chemicals.

Abstract

Pyrolysis gas chromatography mass spectrometry (Py-GC/MS) studies were carried out on the Nigerian and US corn stalks at 500 °C. Analyses of the fast pyrolysis products showed that the Nigerian corn stalks produced more diverse compounds like: acetaldehyde, acetic acid methyl ester, 2,3-pentanedione, 1-hydroxy-2-butanone, butanedial, phenol and vanillin. On the other hand, the pyrolyzed US corn stalks produced compounds like: furfural, phenol, 2-methoxy, 2-methylbenzaldehyde, and 2-methoxy-4-vinylphenol which had significantly high peak area percentages. Few anhydrous sugars were detected in the pyrolysis products of both samples. Both samples were found to be good biomass for the production of bio-oil and chemicals. However, the Nigerian corn stalks seem to be more suitable for the production of bio-oil while the US corn stalks seem to be more suitable for the production of valuable chemicals.

References

[1] Ab Rasid, N. S., & Asadullah, M. (2014). Recent development of biomass fast pyrolysis technology and bio-oil upgrading: an overview. Adv. Mater. Res. (Durnten-Zurich, Switz.), 906, 142-147, 147 pp. doi: 10.4028/www.scientific.net/AMR.906.142 http://dx.doi.org/10.4028/www.scientific.net/AMR.906.142.

[2] Amen-Chen, C., Pakdel, H., & Roy, C. (1997). Separation of phenols from eucalyptus wood tar. Biomass Bioenergy, 13, 25-37. doi: 10.1016/s0961-9534(97)00021-4 http://dx.doi.org/10.1016/S0961-9534(97)00021-4.

[3] Artigues, A., Puy, N., Bartroli, J., & Fabregas, E. (2014). Comparative assessment of internal standards for quantitative analysis of bio-oil compounds by gas chromatography/mass spectrometry using statistical criteria. Energy Fuels, 28, 3908-3915. doi: 10.1021/ef5005545 http://dx.doi.org/10.1021/ef5005545.

[4] Bahng, M.-K., Mukarakate, C., Robichaud, D. J., & Nimlos, M. R. (2009). Current technologies for analysis of biomass thermochemical processing: A review. Anal. Chim. Acta, 651, 117-138. doi: 10.1016/j.aca.2009.08.016 http://dx.doi.org/10.1016/j.aca.2009.08.016.

[5] Balat, M., & Balat, H. (2009). Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energy, 86, 2273-2282. doi: 10.1016/j.apenergy.2009.03.015 http://dx.doi.org/10.1016/j.apenergy.2009.03.015.

[6] Bhattacharya, S. C., Salam, P. A., & Sharma, M. (2000). Emissions from biomass energy use in some selected Asian countries. Energy (Oxford), 25, 169-188. doi: 10.1016/s0360-5442(99)00065-1 http://dx.doi.org/10.1016/S0360-5442(99)00065-1.

[7] Branca, C., Di Blasi, C., & Galgano, A. (2012). Catalyst Screening for the Production of Furfural from Corncob Pyrolysis. Energy Fuels, 26, 1520-1530. doi: 10.1021/ef202038n http://dx.doi.org/10.1021/ef202038n.

[8] Chang, J., Wang, W., Ren, X., Li, L., Zhang, Z., Yu, Y., & Geng, J. (2014). CN103980929A.

[9] Cheng, Y.-T., Jae, J., Shi, J., Fan, W., & Huber, G. W. (2012). Production of Renewable Aromatic Compounds by Catalytic Fast Pyrolysis of Lignocellulosic Biomass with Bifunctional Ga/ZSM-5 Catalysts. Angew. Chem., Int. Ed., 51, 1387-1390, S1387/1381-S1387/1310. doi: 10.1002/anie.201107390 http://dx.doi.org/10.1002/anie.201107390.

[10] Demirbas, A. (2009). Biorefineries: Current activities and future developments. Energy Convers. Manage, 50, 2782-2801. doi: 10.1016/j.enconman.2009.06.035 http://dx.doi.org/10.1016/j.enconman.2009.06.035.

[11] Dobele, G., Rossinskaja, G., Dizhbite, T., Telysheva, G., Meier, D., & Faix, O. (2005). Application of catalysts for obtaining 1, 6-anhydrosaccharides from cellulose and wood by fast pyrolysis. J. Anal. Appl. Pyrolysis, 74, 401-405. doi: 10.1016/j.jaap.2004.11.031 http://dx.doi.org/10.1016/j.jaap.2004.11.031.

[12] Heo, H. S., Park, H. J., Dong, J.-I., Park, S. H., Kim, S., Suh, D. J., Park, Y.-K. (2010). Fast pyrolysis of rice husk under different reaction conditions. J. Ind. Eng. Chem. (Amsterdam, Neth.), 16, 27-31. doi: 10.1016/j.jiec.2010.01.026 http://dx.doi.org/10.1016/j.jiec.2010.01.026.

[13] Hosoya, T., Kawamoto, H., & Saka, S. (2009). Role of methoxyl group in char formation from lignin-related compounds. J. Anal. Appl. Pyrolysis, 84, 79-83. doi: 10.1016/j.jaap.2008.10.024 http://dx.doi.org/10.1016/j.jaap.2008.10.024.

[14] Huang, Y., Wei, Z., Yin, X., & Wu, C. (2012). Pyrolytic characteristics of biomass acid hydrolysis residue rich in lignin. Bioresour. Technol., 103, 470-476. doi: 10.1016/j.biortech.2011.10.027 http://dx.doi.org/10.1016/j.biortech.2011.10.027.

[15] Karasmanoglu, F., & Tetik, E. (1998). Fuel properties of pyrolytic oil of the straw and stalk of rape plant. Renewable Energy, 16, 1090-1093. http://dx.doi.org/10.1016/S0960-1481(98)00422-4.

[16] Ko, C. H., Park, S. H., Jeon, J.-K., Suh, D. J., Jeong, K.-E., & Park, Y.-K. (2012). Upgrading of biofuel by the catalytic deoxygenation of biomass. Korean J. Chem. Eng., 29, 1657-1665. doi: 10.1007/s11814-012-0199-5 http://dx.doi.org/10.1007/s11814-012-0199-5.

[17] Lorenc-Grabowska, E., & Rutkowski, P. (2013). Activated carbons from solid residue from fast pyrolysis of biomass. Inz. Ochr. Srodowiska, 16, 205-215.

[18] Lu, Q., Xiong, W.-M., Li, W.-Z., Guo, Q.-X., & Zhu, X.-F. (2009). Catalytic pyrolysis of cellulose with sulfated metal oxides: A promising method for obtaining high yield of light furan compounds. Bioresour. Technol., 100, 4871-4876. doi: 10.1016/j.biortech.2009.04.068 http://dx.doi.org/10.1016/j.biortech.2009.04.068.

[19] Lv, G., Wu, S., Yang, G., Chen, J., Liu, Y., & Kong, F. (2013). Comparative study of pyrolysis behaviors of corn stalk and its three components. J. Anal. Appl. Pyrolysis, 104, 185-193. doi: 10.1016/j.jaap.2013.08.005 http://dx.doi.org/10.1016/j.jaap.2013.08.005.

[20] McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresour. Technol., 83, 37-46. doi: 10.1016/s0960-8524(01)00118-3 http://dx.doi.org/10.1016/S0960-8524(01)00118-3.

[21] Nadji, H., Diouf, P. N., Benaboura, A., Bedard, Y., Riedl, B., & Stevanovic, T. (2009). Comparative study of lignins isolated from Alfa grass (Stipa tenacissima L.). Bioresour. Technol., 100, 3585-3592. doi: 10.1016/j.biortech.2009.01.074 http://dx.doi.org/10.1016/j.biortech.2009.01.074.

[22] Park, H. J., Park, K.-H., Jeon, J.-K., Kim, J., Ryoo, R., Jeong, K.-E., Park, Y.-K. (2012). Production of phenolics and aromatics by pyrolysis of miscanthus. Fuel, 97, 379-384. doi: 10.1016/j.fuel.2012.01.075 http://dx.doi.org/10.1016/j.fuel.2012.01.075.

[23] Peng, Y., & Wu, S. (2010). The structural and thermal characteristics of wheat straw hemicellulose. J. Anal. Appl. Pyrolysis, 88, 134-139. doi: 10.1016/j.jaap.2010.03.006 http://dx.doi.org/10.1016/j.jaap.2010.03.006.

[24] Raveendran, K., Ganesh, A., & Khilar, K. C. (1995). Influence of mineral matter on biomass pyrolysis characteristics. Fuel, 74, 1812-1822. doi: 10.1016/0016-2361(95)80013-8 http://dx.doi.org/10.1016/0016-2361(95)80013-8.

[25] Saha, B. C. (2003). Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol, 30, 279-291. doi: 10.1007/s10295-003-0049-x http://dx.doi.org/10.1007/s10295-003-0049-x.

[26] Samanya, J., Hornung, A., Apfelbacher, A., & Vale, P. (2012). Characteristics of the upper phase of bio-oil obtained from co-pyrolysis of sewage sludge with wood, rapeseed and straw. J. Anal. Appl. Pyrolysis, 94, 120-125. doi: 10.1016/j.jaap.2011.11.017 http://dx.doi.org/10.1016/j.jaap.2011.11.017.

[27] Shen, D. K., & Gu, S. (2009). The mechanism for thermal decomposition of cellulose and its main products. Bioresour. Technol., 100, 6496-6504. doi: 10.1016/j.biortech.2009.06.095 http://dx.doi.org/10.1016/j.biortech.2009.06.095.

[28] Sun, J.-P., Sui, S.-J., Zhang, Z.-J., Tan, S., & Wang, Q.-W. (2013). Study on the pyrolytic behavior of wood-plastic composites using Py-GC/MS. BioResources, 8, 6196-6210, 6115 pp. doi: 10.15376/biores.8.4.6196-6210 http://dx.doi.org/10.15376/biores.8.4.6196-6210.

[29] Sun, R., Lawther, J. M., & Banks, W. B. (1998). Isolation and characterization of hemicellulose B and cellulose from pressure refined wheat straw. Ind. Crops Prod., 7, 121-128. doi: 10.1016/s0926-6690(97)00040-x http://dx.doi.org/10.1016/S0926-6690(97)00040-X.

[30] Venderbosch, R. H., & Heeres, H. J. (2011). Pyrolysis oil stabilization by catalytic hydrotreatment.

[31] Vispute, T. P., Zhang, H., Sanna, A., Xiao, R., & Huber, G. W. (2010). Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science (Washington, DC, U. S.), 330, 1222-1227. doi: 10.1126/science.1194218 http://dx.doi.org/10.1126/science.1194218.

[32] Xie, Q., & Tong, Z. (2014). CN103833542A.

[33] Xie, Y., Xu, C., Fang, D., Luo, Q., & Ma, J. (2013). A review on biomass fast pyrolysis oil properties and applications. Adv. Mater. Res. (Durnten-Zurich, Switz.), 779-780, 1431-1436, 1437 pp. doi: 10.4028/www.scientific.net/AMR.779-780.1431 http://dx.doi.org/10.4028/www.scientific.net/AMR.779-780.1431.

[34] Zhang, H., Xiao, R., Jin, B., Shen, D., Chen, R., & Xiao, G. (2013). Catalytic fast pyrolysis of straw biomass in an internally interconnected fluidized bed to produce aromatics and olefins: Effect of different catalysts. Bioresour. Technol., 137, 82-87. doi: 10.1016/j.biortech.2013.03.031 http://dx.doi.org/10.1016/j.biortech.2013.03.031.

[35] Zhang, H., Xiao, R., Wang, D., Zhong, Z., Song, M., Pan, Q., & He, G. (2009). Catalytic Fast Pyrolysis of Biomass in a Fluidized Bed with Fresh and Spent Fluidized Catalytic Cracking (FCC) Catalysts. Energy Fuels, 23, 6199-6206. doi: 10.1021/ef900720m http://dx.doi.org/10.1021/ef900720m.

Downloads

Published

2015-04-02

Issue

Section

Articles