Molecular structure, spectroscopic (UV-vis, FT-IR and FT- Raman), conformational aspects of 3t-pentyl-2r,6c-di(naphthalen-1-yl) piperidin-4-one oxime: a comprehensive experimental and DFT study

Authors

  • K. Anandhy Pachaiyappa’s College
  • M. Arockia doss Annamalai University
  • S. Amala
  • S. Mahalakshmi Pachaiyappa’s College
  • G. Rajarajan Annamalai University

DOI:

https://doi.org/10.14419/ijac.v5i1.7186

Published:

2017-02-10

Keywords:

3-PDNPO, FT-IR, FT-Raman, HOMO –LUMO, Hyperpolarizability.

Abstract

The molecular structure and conformational aspects of 3t-pentyl-2r,6c-di(naphthalen-1-yl)piperidin-4-one oxime (3-PDNPO) were studied by using B3LYP level with 6-31G(d,p) p basis set. The optimized geometrical parameters are in agreement with analogue available single XRD data. The optimized parameters showed that the piperidin-4-one ring adopts chair conformation.The FT- IR and FT-Raman spectra were recorded within the region 4000-400 cm-1 and 4000-10 cm-1, respectively. It was found by experimental wavenumbers and DFT wavenumbers were in good agreement. Electronic properties are investigated using TD-DFT/B3LYP method using 6-31G (d,p) basis set and compared with experimental UV-visible spectra. Additionally, the ΔE gap investigated three phases follows the order of CHCl3 > gas > Methanol. The favourite sites for substitution reactions were evaluated by Mulliken and MEP analyses. From NLO analysis, it is found that the hyperpolarizability values are two times greater than the urea.Our proposed simulation procedure offers an alternative compound with which we can evaluate or design the best candidate NLO material.

References

[1] Klayman, D.L., Bartosevich, J.F., Scott Griffin, T., Mason, C.J., Scovill, J.P., 1979, 2-Acetylpyridine Thiosemicarbazones. A New Class of Potential Antimalarial Agents,J . Med. Chem., 22, 855-862. http://pubs.acs.org/doi/abs/10.1021/jm00193a020.

[2] Gopalakrishnan, M., Sureshkumar, P., Thanusu, J., Kanagarajan, V., 2008, Unusual Formation of N-hydroxy-3,3-dimethyl-2,6-diarylpiperidin-4-one and its Thiosemicarbazide Derivative-Synthesis and Antimicrobial Activity, J. Korean Chem. Soc., 52, 503-510.https://doi.org/10.5012/jkcs.2008.52.5.503.

[3] Bharti, N., Husain, K., Gonzalez Garza, M.T., Cruz-Vega, D.E., Catro-Garza, J., Mata- Cardenas, B.D., Naqvi, F., Azam, A., 2002, Synthesis and in vitro antiprotozoal activity of 5-nitrothiophene-2-carboxaldehyde thiosemicarbazone derivatives, Bioorg. Med. Chem. Lett., 12, 3475-3478.https://doi.org/10.1016/S0960-894X(02)00703-5.

[4] Jayabharathi, J., Thanikachalam, V., Padamavathy, M., Srinivasan,N., 2011, Solvatochromic analysis of some N-nitrosooxime derivatives -Taft and Catalan approach, Spectrochim. Acta Part A, 81 380-389. https://doi.org/10.1016/j.saa.2011.06.024.

[5] Jayabharathi, J., Thanikachalam,V., Padamavathy, M., Venkatesh Perumal, M., 2012, Photophysical Properties of Novel Picrate Derivatives –Solvent Effect, J.Fluoresc., 22 , 269 279. https://doi.org/10.1007/s10895-011-0957-5.

[6] Lee, C., Yang, W., Parr, R. G., 1988, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37, 785 -789. https://doi.org/10.1103/PhysRevB.37.785.

[7] Subashchandrabose, S., Saleem, H., Erdogdu, Y., Rajarajan, G., Thanikachalam, V., 2011, FT-Raman, FT-IR spectra and total energy distribution of 3-pentyl-2, 6-diphenylpiperidin-4-one: DFT method, Spectrochimi. Acta Part A, 82, 260-269. https://doi.org/10.1016/j.saa.2011.07.046.

[8] Arockia doss, M., Savithiri, S., Rajarajan, G., Thanikachalam, V., Anbuselvan, C., 2015, Synthesis, electronic structure investigation of 3-pentyl-2,6-di(furan-2-yl)piperidin-4-one by FT-IR, FT-Raman and UV–visible spectral studies and ab initio/DFT calculations, Spectrochim. Acta Part A, 151, 773-784. https://doi.org/10.1016/j.saa.2015.07.024.

[9] Anandhy, K., Arockia doss, M., Savithiri, S., Rajarajan, G., Mahalakshmi, S., 2016, Molecular structure, spectroscopic (FT-IR and FT-Raman) of 3-butyl-2,6-di (naphthalen-1-yl) phenylpiperidin-4-one: A experimental andDFT study, Int. J. Adv. Res. Trends Eng. Technol., 3(2),1301-1311.

[10] Savithiri, S., Rajarajan, G., Srividhya, V., Jijesh, J., Thanikachalam, V., Jayabharathi, J., Arockia doss, M., 2014, Synthesis, Spectral and Structure Activity Relationship Studies of Substituted 3t-pentyl-2r, 6c–diarylpiperidin-4-ones and their Corresponding Oxime Derivatives,Can. Chem. Trans., 2, 201-220. https://doi.org/10.13179/canchemtrans.2014.02.02.0090.

[11] Frisch, M.J., et al., Gaussian 03, Revision E.01, Gaussian Inc, Wallingford, CT,2004.

[12] Arockia doss, M., Savithiri, S., Rajarajan, G., Thanikachalam, V., Saleem, H., 2015, Synthesis, spectroscopic (FT-IR, FT-Raman, UV and NMR) and computational studies on 3t-pentyl-2r, 6c-diphenylpiperidin-4-one semicarbazone, Spectrochim. Acta Part A, 148, 189-202. https://doi.org/10.1016/j.saa.2015.03.117.

[13] Manimekalai, A., Maruthavanan, T., Selvaraju, K., 2012, DFT and experimental prediction of negative chemical shifts of methyl protons in some piperidines, Spectrochim. Acta Part A, 97 942-947. https://doi.org/10.1016/j.saa.2012.07.089.

[14] Arockia doss, M., Rajarajan, G., Thanikachalam, V., Selvanayagam, S., Sridhar, B., 2017, Synthesis, spectroscopic (UV-vis, FT-IR and NMR), single crystal XRD of 3, 5-diethyl -2, 6-di (thiophen-2-yl) piperidin-4-on-1-ium picrate: A comprehensive experimental and computational study, J. Mol. Struct., 1128, 268-278. https://doi.org/10.1016/j.molstruc.2016.08.065.

[15] Gayathri, P., Jayabharathi, J., Rajarajan, G., Thiruvalluvar, A., Butcher, R.J., 2009, t-3-Pentyl-r-2, c-6-diphenyl­piperidin-4-one, Acta Cryst., 65E, o3083. https://doi.org/10.1107/s1600536809046753.

[16] Jayabharathi,J., Thangamani, A., Balamurugan, S., A. Thiruvalluvar, A. Linden, 2008, t-3-Benzyl-r-2,c-6-bis­(4-methoxy­phen­yl)piperidin-4-one oxime, Acta Cryst., 64E, o1211. https://doi.org/10.1107/S1600536808016449.

[17] Socrates, G., 1980, Infrared Characteristic Group Frequencies, third ed., Wiley Interscience Publications, New York.

[18] Pavia, D.L., Lampman, G.M., Kriz, G.S., Vyvyan, J.R., 2008, Spectroscpoy, CengageLearing, New York.

[19] Silverstein, R.M., Webster, F.X., 2005, Spectroscopic Identification of Organic Compounds, 7th (Edn), Wiley, New York.

[20] Szafran, M., Komasa, A., Adamska, E.B., 2007, Crystal and
molecular structure of 4-carboxypiperidinium chloride
(4-piperidinecarboxylic acid hydrochloride), J. Mol. Struct., 827, 101-107. https://doi.org/10.1016/j.molstruc.2006.05.012.

[21] James, C., Amal Raj, A., Reghunathan, R., Hubert Joe, I., Jayakumar, V.S., 2006, Structural conformation and vibrational spectroscopic studies of 2,6-bis(p-N,N-dimethyl benzylidene)cyclohexanone using density functional theory,
J. Raman Spectrosc., 37, 1381-1392. https://doi.org/10.1002/jrs.1554.

[22] Arockia doss, M.,Amala, S., Rajarajan, G., Thanikachalam, V., 2016, Synthesis, Spectral (Uv-Vis, FT-IR and NMR), Molecular structure, NBO, HOMO-LUMO and NLO Analysis of Some
3t-pentyl-2r,6cdiarylpiperidin-4-one Semicarbazones, Can. Chem. Trans., 4, 398-414. DOI:10.13179/canchemtrans.2016.03.0330.

[23] Okulik, N.,Jubert, A.H., 2005, Theoretical Analysis of the Reactive Sites of Non-steroidal Anti–inflammatory Drugs, Internet Electron J. Mol. Des., 4, 17-30.

[24] Vijayan, N., Babu, R.R., Gopalakrishnan, R., Dhanuskodi, S., Ramasamy, P., 2002, Growth of semicarbazone of benzophenone single crystals, J. Cryst. Growth, 236, 407-412. https://doi.org/10.1016/S0022-0248(01)02207-2.

[25] Savithiri, S.,Arockia doss, M., Rajarajan, G., Thanikachalam, V., Bharanidharan, S., Saleem, H., 2015, Spectroscopic (FT-IR, FT-Raman) and quantum mechanical studies of 3t-pentyl-2r, 6c-diphenylpiperidin-4-one thiosemicarbazone, Spectrochim. Acta Part A, 136, 782-792. https://doi.org/10.1016/j.saa.2014.09.095.

[26] Gorelsky, S.I., 2013, SWizard program, http://www.sg-chem.net/, University of Ottawa, Ottawa, Canada.

[27] Mulliken, R.S., 1995, Electronic Population Analysis on LCAOMO Molecular Wave Functions. J. Chem. Phys. 23, 1833-1840. https://doi.org/10.1063/1.1740588.

[28] Fleming, I., 1976, Frontier Orbitals, Organic Chemical Reactions, Wiley, London.

[29] Curtiss, L.A., Redfern, P.C., Raghavachari, K., Pople, J.A., 1998, Gaussian-3 theory using density functional geometries and zero-point energies, J. Chem. Phys., 42, 117-122. https://doi.org/10.1063/1.478676.

[30] Fukui, K., 1982, Role of frontier orbitals in chemical reactions, Science, 218,747-754.https://doi.org/10.1126/science.218.4574.747.

[31] Udhayakala, P., Rajendiran, T., Seshadri, S., Gunasekaran,
S., 2011, Quantum chemical vibrational study, molecular property and HOMO-LUMO energies of 3-bromoacetophenone for Pharmaceutical application, J. Chem. Pharm. Res., 3(3) 610-625.

[32] Subramanian, N., Sundaraganesan, N., Jayabharathi, J., 2010,
Molecular structure, spectroscopic (FT-IR, FT-Raman, NMR, UV) studies and first-order molecular hyperpolarizabilities of 1,2-bis(3-methoxy-4-hydroxybenzylidene)hydrazine by density functional method, Spectrochim. Acta A, 76, 259-269. https://doi.org/10.1016/j.saa.2010.03.033.

[33] Sun, Y., Chen, X., Sun, L., Guo, X., Lu, W., 2003, Nanoring structure and optical properties of Ga8As8, Chem. Phys. Lett. 381, 397-403. https://doi.org/10.1016/j.cplett.2003.09.115.

[34] Christiansen, O., Gauss, J., Stanton, J.F., 1999, Frequency-dependent polarizabilities and first hyperpolarizabilities of CO and H2O from coupled cluster calculations. Chem. Phys. Lett., 305,147-155. https://doi.org/10.1016/S0009-2614(99)00358-9.

[35] Kleinman, D.A., 1977, Nonlinear Dielectric Polarization in Optical Media, Phys. Rev. 126, 1962. https://doi.org/10.1103/PhysRev.126.1977.

[36] Labidia, N.S., Djebaili, A., 2010, Enhancement of molecular
polarizabilities by the push–pull mechanism: A DFT study of substituted hexatriene, Mater. Sci. Eng. B169 8-12. https://doi.org/10.1016/j.mseb.2009.12.043.

[37] Vijayakumar, T., Hubert Joe, I., Reghunadhan Nair, C.P., Jayakumar, V.S., 2008, Efficient π electrons delocalization in prospective push–pull non-linear optical chromophore 4-[N, N-dimethylamino]-4′-nitro stilbene (DANS): A vibrational spectroscopic study, Chem. Phys., 343 83-99. https://doi.org/10.1016/j.chemphys.2007.10.033.

[38] Jin, Z- M.,Zhou, W,Jin, Z., 1988, X-ray powder diffraction analysis of a nonlinear optical material 1-benzoyl-3-(4-benzyl)thiourea [N-benzoyl-N′-(4-benzyl)thiourea] Powder diff., 13, 41-43.

View Full Article: