Synthesis, structural characterization and comparison of experimental and theoretical results by DFT level of molecular structures of 1,2,3-triazoles derived from 5-chloroisatin

  • Authors

    • Zineb Tribak Chemistry
    • Mohammed Skalli Chemistry
    • Omar Senhaji Chemistry
    • Youssef Kandri Rodi Chemistry
    2017-10-23
    https://doi.org/10.14419/ijac.v5i2.8359
  • 5-Chloro-1-(Prop-2-Yn-1-Yl) Indoline-2, 3-Dione, Dipolarophile, 1, 3-Dipolar Cycloaddition, Theoretical Study, DFT.
  • This work deals about the synthesis, NMR characterization and the density functional method (B3LYP) with the 6-31G basis set of 1, 3-dipolar cycloaddition reactions between the two azides as dipoles and propargylchloroisatin as dipolarophile. Furthermore, DFT calculations were used to study the nucleophile–electrophile interactions of the azides and dipolarophile and also the stability between the regioisomers comparing their energy. Our calculations are in a good agreement with the experimental findings.

  • References

    1. [1] Tribak, Z.; El Amin, O.; Skalli, M.K.; Senhaji, O. ;Kandri. Rodi, Y.; Houssaini. Iraqui, M.; Synthesis, Characterization, and Antibacterial Activity of Some Novel 5-Chloroisatin Derivatives. Int. J. Eng. Res. Appl. 2017, 7(6), 66-70.

      [2] Foss, Jr. F W.; Mathews, T P. ; Kharel, Y ; Kennedy, P C. ; Snyder, A H. ; Davis M D. ; Lynch, K R. ; Macdonald, T L.; Synthesis and Biological Evaluation of Sphingosine Kinase Substrates as Sphingosine-1-Phosphate Receptor Prodrugs. Bioorg Med Chem. 2009; 17(16): 6123–6136.https://doi.org/10.1016/j.bmc.2009.04.015.

      [3] Fowler, P W.,' Manolopoulos, D E.; Ryan, R P.; Isomerisations of the fullerenes. Carbon. 1992, 30, 1235-1250.https://doi.org/10.1016/0008-6223(92)90065-5.

      [4] Prato. M.; Fullerene chemistry for materials science applications. J. Mater. Chem., 1997, 7, 1097-1109.https://doi.org/10.1039/a700080d.

      [5] Moriyama, S.; Vallée, Y.; Thermal Isomerization of 1,3-Dipolar Cycloadducts of 3,4-Dihydro-β-carboline 2-Oxide. Eur. J. Org. Chem. 1998, 7, 1391–1395.https://doi.org/10.1002/(SICI)1099-0690(199807)1998:7<1391::AID-EJOC1391>3.0.CO;2-G.

      [6] Wannassi, N. ; Rammah, M M.; Rammah, M B.; Ciamala, K.; Synthese des spirocyclopropanes via la cycloaddition dipolaire-1,3 du diazoacetated’ethyle avec les arylidenes d’indan-1’,3’-dione. Journal de la SociétéChimique de Tunisie, 2012, 14, 117-125.

      [7] Kumar Kaushik, N.; Kaushik, N.; Attri, P.; Kumar, N.; Hyeok Kim, C .; Kumar Verma, A.; Ha Choi, E.; Biomedical Importance of Indoles. Molecules. 2013, 18 (6), 6620-6662.https://doi.org/10.3390/molecules18066620.

      [8] Krug, M.; Hilgeroth, A.; Recent advances in the development of multi-kinase inhibitors.Mini-Rev. Med. Chem. 2008, 8, 1312 -1327.https://doi.org/10.2174/138955708786369591.

      [9] Tribak, Z.; Ghibate, R.; Skalli, M.K.; KandriRodi, Y.; Mrani, D.; Aouniti, A.; Hammouti, B.; Senhaji, O.; Synthesis and Characterization of a New Cationic Surfactant Derived from 5-Chloro-1H-indole-2,3-dione In Aqueous Systems, Int. J. Eng Res Appl. 2017, 7 (4), 04-08.

      [10] Tribak, Z.; Haoudi, A.; KandriRodi, Y.; Elmsellem, H.; Skalli, M. K.; Ouzidan, Y.; Mazzah, A.; Essassi, E.M.; Synthesis and reactivity of new heterocyclic systems derived from 5-chloro-1H-indole-2, 3-dione. Mor. J. Chem. 2016, 4(4), 1157-1163.

      [11] Tribak, Z.; Haoudi, A.; Skalli, M.K.; KandriRodi, Y.; El Azzouzi, M.; Aouniti, A.; Hammouti, B. Senhaji, O. 5-Chloro-1H-indole-2,3-dione derivative as corrosion inhibitor for mild steel in 1M H3PO4: weight loss, electrochemical and SEM studies. J. Mater. Environ. Sci. 2017, 8 (1) 298-309.

      [12] Rauk, A.; Orbital Interaction Theory of Organic Chemistry, Wiley-Interscience, New York, 2001.

      [13] Nguen, L. T.; De Proft F.; Dao V. L. ;Nguen M. T. ; Geerlings. P, A.; Theoretical approach to the regioselectivity in 1,3-dipolar cycloadditions of diazoalkanes, hydrazoic acid and nitrous oxide to acetylenes, phosphaalkynes and cyanides.J. Phys. Org. Chem., 2003, 16, 615 –625.https://doi.org/10.1002/poc.653.

      [14] Geerlings, P.; De Proft, F.; Langenaeker, W.; Conceptual Density Functional Theory .Chem. Rev. 2003, 103, 1793 –1874.https://doi.org/10.1021/cr990029p.

      [15] Senhaji, O.; Taouil, R.; Skalli, M. K.; Bouachrine, M.; Hammouti, B.; Hamidi, M.; Al-Deyab, S.S.; Experimental and Theoretical Study for Corrosion Inhibition in Normal Hydrochloric Acid Solution by Some New Phophonated Compounds. Int. J. Electrochem. Sci., 2011, 6, 6290 - 6299.

      [16] Kolb H. C.; Finn M. G; Sharpless K. R.; Click Chemistry: Diverse Chemical Function from a Few Good Reactions.Angew. Chem. Int .Ed. 2001, 40, 2004- 2021.https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5.

      [17] Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V.; OrganicAzides: An Exploding Diversity of a Unique Class of Compounds. Angew. Chem. Int. Ed., 2005, 44, 5188–5240.https://doi.org/10.1002/anie.200400657.

      [18] Tribak, Z.; Haoudi, A.; KandriRodi, Y.; Elmsellem, H.; Skalli, M. K.; Ouzidan, Y.; Mazzah, A.; Essassi, E.M.; Synthesis and reactivity of new heterocyclic systems derived from 5-chloro-1H-indole-2,3-dione. Mor. J. Chem. 2016, 4(4), 1157-1163.

      [19] Huisgen, R.; in 1,3-Dipolar Cycloaddilion Chemistry, A. Padwa Ed., Wiley, New York,1984.

      [20] Hiberty, R Introduction à la chimiequantique, Editions de l’écolepolytechnique de Paris (2004) 203.

      [21] Houk, K. N.; Sims, J.; Duke, R. E.; Strozier, R. W.; George, J. K.; Frontier molecular orbitals of 1,3 dipoles and dipolarophiles .J. Am. Chem. Soc., 1973, 95, 7287–7301.https://doi.org/10.1021/ja00803a017.

      [22] Tribak, Zineb.; KandriRodi, Youssef.; Haoudi, Amal.; Essassi, El Mokhtar.; Capet Frédéric.; Zouihri, Hafid 1-Benzyl-5-chloroindoline-2,3-dione. IUCrData. 2016, 1(6) 1, x160854

      [23] Fukui, K.; Theory of orientation and stereoselection, Springer-Verlag, Berlin, 1975; .Klopman, G.; Chemical Reactivity and Reaction Paths, Wiley, New York, 1974.

      [24] Weinberg, J.; Lerner, D. A.; Theoretical Study of 5-HTP. Potential New Drug Resulting from the Complexation of 5-HTP with ATP. Computational Chem, 2013, 1, 1-4.https://doi.org/10.4236/cc.2013.11001.

      [25] Pal, S.; Chandrakumar, K. R. S.; Critical Study of Local Reactivity Descriptors for Weak Interactions: Qualitative and Quantitative Analysis of Adsorption of Molecules in the Zeolite Lattice. J. Am. Chem. Soc., 2000, 122, 4145–4153.https://doi.org/10.1021/ja993617t.

      [26] Mendez, F.; Gazquez, J. L.; Chemical Reactivity of Enolate Ions: The Local Hard and Soft Acids and Bases Principle Viewpoint. J. Am. Chem. Soc. 1994, 116, 9298–9301.https://doi.org/10.1021/ja00099a055.

      [27] Gazquez, J. L.; Mendez, F.; the Hard and Soft Acids and Bases Principle: An Atoms in Molecules Viewpoint J. Phys. Chem., 1994, 98, 4591–4593.https://doi.org/10.1021/j100068a018.

      [28] Mendez, F.; Tamariz, J.; Geerlings. P.; 1, 3-Dipolar Cycloaddition Reactions: A DFT and HSAB Principle Theoretical Model. J. Phys. Chem., (A) 102 (1998), 6292–6296.

      [29] Domingo, L. R.; Picher, M. T.; A DFT study of the Huisgen 1,3-dipolar cycloaddition between hindered thiocarbonylylides and tetracyanoethylene Tetrahedron, 2004, 60, 5053-5058.https://doi.org/10.1016/j.tet.2004.04.024.

      [30] Roy, R. K.; Krishnamurti, S.; Geerlings, P.; Pal, S.; Local Softness and Hardness Based Reactivity Descriptors for Predicting Intra- and Intermolecular Reactivity Sequences: Carbonyl Compounds . J. Phys. Chem., 1998, (A) 102, 3746–3755.

      [31] Roy, R. K.; De Proft, F.; Geerlings, P.; Site of Protonation in Aniline and Substituted Anilines in the Gas Phase: A Study via the Local Hard and Soft Acids and Bases Concept. J. Phys. Chem., 1998, (A) 102, 7035–7040.

      [32] Pilepic, V.; Ursic, S.; Nucleophilic reactivity of the nitroso group. Fukui function DFT calculations for nitrosobenzene and 2-methyl-2-nitrosopropane J. Molecular. Struct. Theochem. 2001, 538, 41-49.https://doi.org/10.1016/S0166-1280(00)00642-4.

      [33] Al Houari, G.; Kerbal, A.; Miqueu, K.; Sotiropoulos, J-M. ; Garrigues, B. ; Benhadda, T. ; Benlarbi, N.; Safir, I.; Filali Baba, M.; Synthese de nouveaux spiro [(3-methyl-3, 4-dihydro)-1(2h)-naphtalenone-2:5'-(3',4'-diaryl-4',5'-dihydro)-isoxazoles] par la reaction de cycloaddition dipolaire-1,3. J. Mar.Chim..Heterocycl. 2008, 7, 16-23.

      [34] Tribak, Zineb.; KandriRodi, Youssef.; Haoudi, Amal.; Essassi, El Mokhtar.; Capet Frédéric.; Zouihri, Hafid, 1-(12-Bromododecyl)-5-chloroindoline-2,3-dione. IUCrData 2016, 1(6), 1, x160971.

      [35] Tribak, Zineb. ; KandriRodi, Youssef. ; Haoudi, Amal.;Essassi, El Mokhtar. ; Capet Frédéric.; Zouihri, Hafid, 1-Allyl-5-chloroindoline-2, 3-Dione. IUCrData. 2016, 1(6), 1, x160862.

  • Downloads

  • How to Cite

    Tribak, Z., Skalli, M., Senhaji, O., & Kandri Rodi, Y. (2017). Synthesis, structural characterization and comparison of experimental and theoretical results by DFT level of molecular structures of 1,2,3-triazoles derived from 5-chloroisatin. International Journal of Advanced Chemistry, 5(2), 91-95. https://doi.org/10.14419/ijac.v5i2.8359