Structure, electronic properties, NBO, NLO and chemi-cal reactivity of bis (1, 4-dithiafulvalene) derivatives: functional density theory study
-
2017-12-20 https://doi.org/10.14419/ijac.v6i1.8668 -
Computational Chemistry, Density Functional Theory, Electronic Structure, Quantum Chemical Calculations, Tetrathiafulvalenes. -
Abstract
In this work, through computational study based on density functional theory (DFT/B3LYP) using basis set 6-31G (d,p) a number of global and local reactivity descriptors for a series of molecules containing a TTF function which are bis (1,4-dithiafulvalene) derivatives. They were computed to predict the reactivity and the reactive sites on the molecules. The molecular geometry and the electronic properties in the ground state such as frontier molecular orbital (HOMO and LUMO), ionization potential (I) and electron affinity (A) were investigated to get a better insight of the molecular properties. Molecular electrostatic potential (MEP) for all compounds were determined to check their electrophilic or nucleophilic reactivity. Fukui index, polarizability, hyperpolarizability, second order NLO property and natural bond orbital (NBO) analyses have also employed to determine the reactivity of bis (1,4-dithiafulvalene) derivatives.
-
References
[1] Wang L, Zhang, B, Zhang J. (2006). Preparation and Crystal Structure of Dual-Functional Precursor Complex Bis (acetylacetonato) nickel (II) with 4-Pyridyltetrathiafulvalene. Inorg. Chem. 45(17): 6860-6863. https://doi.org/10.1021/ic060095r.
[2] Mas-Torrent M, Rovira C. (2006). Tetrathiafulvalene derivatives for organic field effect transistors. Chem. Commun. 16(5): 433-436. https://doi.org/10.1039/B510121B.
[3] MartÃn N, Sanchez L, Herranz M A, Illesca B, Guldi D M. (). Electronic communication in tetrathiafulvalene (TTF)/C60 systems: toward molecular solar energy conversion materials. Acc. Chem. Res. 40(10): 1015-1024. https://doi.org/10.1021/ar700026t.
[4] Otsubo T, Aso Y, Takimiya K. (1996). Dimeric Tetrathiafulvalenes: New electron donors. Adv. Mater. 8: 203-211. https://doi.org/10.1002/adma.19960080303.
[5] Schukat G, Fanghanel E. (1996). Synthesis, Reactions, and Selected Physico-Chemical Properties of 1, 3- and 1, 2-Tetrachalcogenafulvalenes. Sulfur Rep. 18(1): 1-294. https://doi.org/10.1080/01961779608047896.
[6] Andreu R, Barbera J, GarÃn J, Orduna J, Serrano J L, Sierra T, Leriche P, Salle M, Riou A, Jubault M, Gorgues A. (1998). Synthesis and liquid crystal behaviour of tetrathiafulvalenes containing cyanobiphenylyloxy groups. J. Mater. Chem. 8: 881-887. https://doi.org/10.1039/a708416a.
[7] Naraso Nishida J, Ando S, Yamaguchi J, Itaka K, Koinuma H, Tada H, Tokito S, Yamashita Y. (2005). High-Performance Organic Field-Effect Transistors Based on π-Extended Tetrathiafulvalene Derivatives. J. Am. Chem. Soc. 127(99): 10142-10143. https://doi.org/10.1021/ja051755e.
[8] Kay A, Woolhouse A, Zhao Y, Clays K. (2004). Synthesis and linear/nonlinear optical properties of a new class of ‘RHS’ NLO chromophore. J. Mat. Chem. 14(8): 1321. https://doi.org/10.1039/B315274J.
[9] Bass M, Enoch JM, Stryland EWV, Wolfe WL. (2001). Handbook of Optics IV, Fibre Optics and Nonlinear Optics, Academic Press, New York. ISBN 10: 0071364560.
[10] Prasad PN, Ulrich DR. (1988). Nonlinear Optical and Electroactive Polymers, Plenum, New York. ISBN 978-1-4613-0953-6. https://doi.org/10.1007/978-1-4613-0953-6.
[11] Kajzar F, Lee KS, Jen AY. (2003). Polymers for Photonics applications II, Springer, Berlin Heidelberg. ISBN 978-3-540-45642-1.
[12] Hochberg M, Baehr-Jones T, Wang G, Shearn M, Harvard K, Luo J, and al. (2006). Terahertz all-optical modulation in a silicon-polymer hybrid system. Nat. Mater. 5(9): 703-709. https://doi.org/10.1038/nmat1719.
[13] Burland DM, Miller RD, Walsh CA. (1994). Second-order nonlinearity in poled-polymer systems. Chem. Rev. 94(1): 31-75. https://doi.org/10.1021/cr00025a002.
[14] Abd El-Wareth A, Sarhan O. (2005). Synthesis and applications of tetrathiafulvalenes and ferrocene tetrathiafulvalenes and related compounds. Tetrahedron. 61: 3889–3932. https://doi.org/10.1016/j.tet.2005.02.028.
[15] Gunasekaran S, Balaji RA, Kumeresan S, Anand G, Srinivasan S. (2008). Experimental and theoretical investigations of spectroscopic properties of N-acetyl-5-methoxytryptamine. Can. J. Anal. Sci. Spectrosc. 53: 149-160.
[16] Padmaja L, Ravi Kumar C, Sajan D, Hubert Joe I, Jayakumar VS, Pettit GR. (2009). Density functional study on the structural conformations and intramolecular charge transfer from the vibrational spectra of the anticancer drug combretastatin-A2. Journal of Raman Spectroscopy. 40(4): 419-428. https://doi.org/10.1002/jrs.2145.
[17] Sagdinc S, Pir H. (2009). Spectroscopic and DFT studies of flurbiprofen as dimer and its Cu (II) and Hg (II) complexes. Spectrochim. Acta. A73: 181-194. https://doi.org/10.1016/j.saa.2009.02.022.
[18] Özdemir N, Dayan S, Dayan O, Dinçer M, Kalaycıoglu N. (2013). Experimental and molecular modeling investigation of (E)-N-{2-[(2-hydroxybenzylidene) amino] phenyl} benzenesulfonamide. J. Mol. Phys. 111(6): 707-723. https://doi.org/10.1080/00268976.2012.742209.
[19] Parr R, Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989. ISBN: 9780195092769.
[20] Parr R, Szentpaly L, Liu S. (1999). Electrophilicity Index. J. Am. Chem. Soc. 121(9): 1922-1924. https://doi.org/10.1021/ja983494x.
[21] Janak JF. (197). Proof that ∂E/∂ni=ε in density-functional theory. Phys. Rev. 8; B 18: 7165. https://doi.org/10.1103/PhysRevB.18.7165.
[22] Perdew JP, Parr RG, Levy M, Balduz JL. (1982). Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy. Phys. Rev. Lett. 49: 1691. https://doi.org/10.1103/PhysRevLett.49.1691.
[23] Parr RG, Yang W. (1984). Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc. 106(14): 4049-4050. https://doi.org/10.1021/ja00326a036.
[24] Krishna Kumar V, Sangeetha R, Barathi D, Mathammal R, Jayamani N. (2014). Vibrational assignment of the spectral data, molecular dipole moment, polarizability, first hyperpolarizability, HOMO-LUMO and thermodynamic properties of 5-nitoindan using DFT quantum chemical calculations. Spectrochim. Part A: Mol. Biomol. Spectrosc. 118: 663-671. https://doi.org/10.1016/j.saa.2013.08.089.
[25] Nakano M, Fujita H, Takahata M, Yamaguchi K. (2002). Theoretical Study on Second Hyperpolarizabilities of Phenylacetylene Dendrimer: Toward an Understanding of Structure−Property Relation in NLO Responses of Fractal Antenna Dendrimers. J. Am. Chem. Soc. 124(32): 9648-9655. https://doi.org/10.1021/ja0115969.
[26] Geskin VM, Lambert C, Bredas JL. (2003). Origin of High Second- and Third-Order Nonlinear Optical Response in Ammonio/Borato Diphenylpolyene Zwitterions: the Remarkable Role of Polarized Aromatic Groups. J. Am. Chem. Soc. 125(50): 15651-15658. https://doi.org/10.1021/ja035862p.
-
Downloads
-
How to Cite
Abbaz, T., Bendjeddou, A., & Villemin, D. (2017). Structure, electronic properties, NBO, NLO and chemi-cal reactivity of bis (1, 4-dithiafulvalene) derivatives: functional density theory study. International Journal of Advanced Chemistry, 6(1), 18-25. https://doi.org/10.14419/ijac.v6i1.8668Received date: 2017-11-15
Accepted date: 2017-12-11
Published date: 2017-12-20