Nonlinear optical investigation of (E)-1-(4-flourobenzylidene)urea using theoretical calculations

Authors

  • Tracy J Research Scholar, PRIST University, Chennai Campus, Mahabalipuram
  • Dhandapani A Assistant Professor, CK College of Engineering and Technology, Cuddalore
  • Bharanidharan Bharani Associate Professsor, Bharath University, Chennai-600073

DOI:

https://doi.org/10.14419/ijac.v6i1.8719

Published:

2017-12-27

Keywords:

DFT, FT-IR, FT-Raman, NLO, NBO, FMO.

Abstract

The FT-IR and FT-Raman spectra of (E)-1-(4-flourobenzylidene)urea (4FBU) was recorded and analyzed. The optimized
geometrical parameters were calculated. The complete vibrationally assignments were performed based on PED analysis with the help of SQM method. NBO analysis was carried out to explore the various conjucative/hyperconjucative interactions within the
molecule and their second-order stabilization energy. The HOMO and LUMO energy gap was studied. All theoretical calculations were performed based on B3LYP/6-31G (d,p) level of theory. The first order hyperpolarizability (β0) and related properties (β, α0, Δα) of 4FBU were calculated. Besides, FMOs, MEP, Mulliken atomic charges and various thermodynamic parameters such as
entropy, heat capacity and enthalpy were also calculated.

References

[1] Charles, D. Lowry, Jr., U.S. 2,715,073, 1955.

[2] CompagnicFranosisedereaffinage, Fr. 1,122,357, 1956.

[3] Mounika,K., Pragathi, A., Gyanakumar,C.,2010, Synthesis¸
Characterization and Biological Activity of a Schiff Base Derived from 3-Ethoxy Salicylaldehyde and 2-Amino Benzoic acid and its Transition Metal Complexes, J. Sci. Res. 2 (3), 513-524, https://doi.org/10.3329/jsr.v2i3.4899.

[4] Venkatesh, P., 2011, Synthesis, characterization and antimicrobial activity of various schiff bases complexes of Zn (II) and Cu (II) ions. Asian J Pharm Hea Sci. 1(1):8–11.

[5] Yıldız, M., Dülger, B., Koyuncu, S.Y., Yapici, B.M., 2004,
Synthesis and antimicrobial activity of bis (imido) Schiff bases
derived from thiosemicarbazide with some 2-hydroxyaldehydes and metal complexes, J. Ind. Chem. Soc., 81 7-12.

[6] Ünver, H., Yıldız, M., Dülger, B., Özgen, Ö., Kendi, E., & Durlu, T.N., 2005, Spectroscopic studies, antimicrobial activities and
crystal structures of N-(2-hydroxy-3-methoxybenzalidene)1-aminonaphthalene. Journal of Molecular Structure, 737(2-3),
159–164. https://doi.org/10.1016/j.molstruc.2004.10.030.

[7] Yıldız, M., Ünver, H., Dülger, B., Erdener, D., Ocak, N., Erdönmez, A., &Durlu, T. N., 2005, Spectroscopic study, anti-microbial activity and crystal structures of N-(2-hydroxy-5-nitro benzalidene)4-aminomorpholine and N-(2-hydroxy-1-naphthylidene)4-aminomorpholine. Journal of Molecular Structure, 738(1-3), 253–260. https://doi.org/10.1016/j.molstruc.2004.10.029.

[8] Yıldız, M.,Dülger, B., Çınar, A., 2005, Synthesis and characterization of new crown ethers of Schiff base type and their complexes, J. Ind. Chem. Soc. 82, 414-420.

[9] Yildiz, M., Kĺraz, A., &Dülger, B. (2007). Synthesis and anti-microbial activity of new crown ethers of Schiff base type. Journal of the Serbian Chemical Society, 72(3), 215–224. https://doi.org/10.2298/JSC0703215Y.

[10] Kiraz, A., Yıldız, M., Dülger, B., 2009, Synthesis and Characterization of Crown Ethers, Asian J. Chem. 21, 6, 4495-4507.

[11] Sondhi, S.M., Singh, N., Kumar, A., Lozach, O., Meijer, L., 2006, Synthesis, anti-inflammatory, analgesic and kinase (CDK-1,CDK-5 &GSK-3) inhibition activity evaluation of benzimidazole /benzoxazole derivatives and some Schiff’s bases, Bio-organic & MedicinalChemistry, 14(11), 3758–3765, https://doi.org/10.1016/ j.bmc.2006.01.054.

[12] Cozzi, P.G., 2004, Metal–Salen Schiff base complexes in catalysis: practical aspects. Chem. Soc. Rev., 33(7), 410–421. https://doi.org/10.1039/B307853C.

[13] Chandra, S., Sangeetika, J., 2004, EPR and electronic spectral
studies on copper (II) complexes of some NO donor ligands, J.
Indian Chem. Soc. 81, 203-206.

[14] Whitnall, M., & Richardson, D.R., 2006, Iron: A New Target for Pharmacological Intervention in Neurodegenerative Diseases.
Seminars in Pediatric Neurology, 13(3), 186–197. https://doi.org/10.1016/j.spen.2006.08.008.

[15] Spek, A.L., 1998, PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, the Netherlands.

[16] Pérez-Rebolledo, A., Piro, O.E., Castellano, E.E., Teixeira, L.R., Batista, A. A., &Beraldo, H., 2006, Metal complexes of 2-benzoylpyridine semicarbazone: Spectral, electrochemical and structural studies. Journal of Molecular Structure, 794(1-3), 18–23. https://doi.org/10.1016/j.molstruc.2006.01.032.

[17] Buss, J.L., Neuzil, J., &Ponka, P., 2002, the role of oxidative stress in the toxicity of pyridoxal isonicotinoylhydrazone (PIH)
analogues. Biochemical Society Transactions, 30(4), 755–758. https://doi.org/10.1042/bst0300755.

[18] Kaya, I., &Kamaci, M., 2012, Synthesis, optical, electrochemical, and thermal stability properties of poly (azomethine-urethane)s. Progress in Organic Coatings, 74(1), 204–214. https://doi.org/ 10.1016/j.porgcoat.2011.12.010.

[19] Dinçalp, H., Yavuz, S., Haklı, Ö, Zafer, C., Özsoy, C., Durucasu, İ., &İçli, S., 2010, Optical and photovoltaic properties of salicylaldimine-based azo ligands. Journal of Photochemistry and Photobiology A: Chemistry, 210(1), 8–16. https://doi.org/10.1016/ j.jphotochem.2009.12.012.

[20] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., 2004, Theoretical and Computational Aspects of Magnetic Organic Molecules. Gaussian Inc, Wallingford, CT.

[21] Schlegel, H.B., 1982, Optimization of equilibrium geometries and transition structures. Journal of Computational Chemistry, 3(2), 214–218. https://doi.org/10.1002/jcc.540030212.

[22] Jamróz, M.H., Dobrowolski, J.C., &Brzozowski, R., 2006,
Vibrational modes of 2, 6-, 2, 7-, and 2, 3-diisopropylnaphthalene. A DFT study. Journal of Molecular Structure, 787(1-3), 172–183. https://doi.org/10.1016/j.molstruc.2005.10.044.

[23] Michalska, D., 2003, Raint Program, Wroclaw University of
Technology, Poland.

[24] Michalska, D., &Wysokiński, R., 2005, the prediction of Raman spectra of platinum (II) anticancer drugs by density functional
theory. Chemical Physics Letters, 403(1-3), 211–217. https://doi.org/10.1016/j.cplett.2004.12.096.

[25] Kleinman, D.A., 1962, Nonlinear Dielectric Polarization in Optical Media. Physical Review, 126(6), 1977–1979. https://doi.org/10.1103/PhysRev.126.1977.

[26] Alyar, H., Kantarci, Z., Bahat, M., &Kasap, E., 2007, Investigation of torsional barriers and nonlinear optical (NLO) properties of
phenyltriazines. Journal of Molecular Structure, 834-836, 516–520. https://doi.org/10.1016/j.molstruc.2006.11.066.

[27] Castiglioni, C., Del Zoppo, M., Zuliani, P., &Zerbi, G., 1995,
Experimental molecular hyperpolarizabilities from vibrational
spectra in systems with large electron-phonon coupling. Synthetic Metals, 74(2), 171–177. https://doi.org/10.1016/0379-6779(95) 03364-5.

[28] Zuliani, P., Del Zoppo, M., Castiglioni, C., Zerbi, G., Marder, S.R., & Perry, J.W., 1995, Solvent effects on firstâ€order molecular
hyperpolarizability: A study based on vibrational observables. The Journal of Chemical Physics, 103(23), 9935–9940. https://doi.org/10.1063/1.469882.

[29] Del Zoppo, M., Castiglioni, C., &Zerbi, G., 1995, Response to the “comment on ‘non-linear optical response to strong applied
electromagnetic fields in polyconjugated materials’ by M. Del
Zoppo, C. Castiglioni, G. Zerbi, M. Rui and M. Gussoni†by D.M. Bishop. Synthetic Metals, 68(3), 295–296. https://doi.org/ 10.1016/0379-6779(94)02327-U.

[30] Del Zoppo, M., Castiglioni, C., Zuliani, P., Razelli, A., Zerbi, G., Blanchard-Desce,M., 1998, Use of vibrational spectra for the
determination of first-order molecular hyperpolarizabilities of push–pull polyenes as function of structural parameters, J. Appl. Polym. Sci., 70, 1311–1320. https://doi.org/10.1002/(SICI)1097-4628(19981114)70:7<1311::AID-APP8>3.0.CO;2-P.

[31] Ravikumar, C., Joe, I.H., & Jayakumar, V.S., 2008, Charge transfer interactions and nonlinear optical properties of push–pull
chromophore benzaldehyde phenylhydrazone: A vibrational
approach. Chemical Physics Letters, 460(4-6), 552–558. https://doi.org/10.1016/j.cplett.2008.06.047.

[32] Reed, A.E., &Weinhold, F., 1985, Natural localized molecular
orbitals. The Journal of Chemical Physics, 83(4), 1736–1740. https://doi.org/10.1063/1.449360.

[33] Reed, A.E., Weinstock, R.B., &Weinhold, F., 1985, Natural
population analysis. The Journal of Chemical Physics, 83(2),
735–746. https://doi.org/10.1063/1.449486.

[34] Reed, A.E., &Weinhold, F., 1983, Natural bond orbital analysis of nearâ€Hartree–Fock water dimer. The Journal of Chemical Physics, 78(6), 4066–4073. https://doi.org/10.1063/1.445134.

[35] Foster, J.P., &Weinhold, F., 1980, Natural hybrid orbitals. Journal of the American Chemical Society, 102(24), 7211–7218. https://doi.org/10.1021/ja00544a007.

[36] Chocholoušová, J., Špirko, V., &Hobza, P., 2004, First local
minimum of the formic acid dimer exhibits simultaneously red-shifted O–H⋯O and improper blue-shifted C–H⋯O hydrogen bonds. Phys. Chem. Chem. Phys., 6(1), 37–41. https://doi.org/ 10.1039/B314148A.

[37] Smith, B., 1998, Infrared Spectral Interpretation: A Systematic
Approach, CRC Press, Washington, DC.

[38] Clougherty, L., Sousa, J., & Wyman, G., 1957, Notes - C=N Stretching Frequency in Infrared Spectra of Aromatic Azomethines. The Journal of Organic Chemistry, 22(4), 462–462. https://doi.org/10.1021/jo01355a618.

[39] Silverstein, M., Clayton Basseler, G., Morill, C., 1981,
Spectrometric Identification of Organic Compounds, Wiley, New York.

[40] Erdoğdu, Y., Güllüoğlu, M.T., &Yurdakul, S., 2008, Molecular structure and vibrational spectra of 1, 3-bis (4-piperidyl) propane by quantum chemical calculations. Journal of Molecular Struct,
889(1-3), 361–370. https://doi.org/10.1016/j.molstruc.2008.02.019.

[41] Páez Jerez, A.L., Flores Antognini, A., Cutin, E.H., & Robles, N.L., 2015, Synthesis, characterization and vibrational properties of
p-fluorosulfinylaniline. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 137, 300–305. https://doi.org/ 10.1016/j.saa.2014.08.040.

[42] Roeges, N.P.G., 1994, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures. Wiley: New York.

[43] Faniran, J.A., &Shurvell, H.F., 1968, Infrared spectra of phenylboronic acid (normal and deuterated) and diphenyl phenylboronate. Canadian Journal of Chemistry, 46(12), 2089–2095. https://doi.org/10.1139/v68-341.

[44] Varsanyi, G., 1974, Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives.Wiley: New York.

[45] Wang, J., Cong, S., Wen, S., Yan, L., & Su, Z., 2013, A Rational Design for Dye Sensitizer: Density Functional Theory Study on the Electronic Absorption Spectra of Organoimido-Substituted Hexamolybdates. The Journal of Physical Chemistry C, 117(5),
2245–2251. https://doi.org/10.1021/jp3106452.

[46] Heera, T.R., & Cindrella, L., 2009, Molecular orbital evaluation of charge flow dynamics in natural pigments based photosensitizers. Journal of Molecular Modeling, 16(3), 523–533. https://doi.org/10.1007/s00894-009-0569-z.

View Full Article: