Synthesis photophysical studies of some furfurylnitrones: high-ly selective chemosensors for Zn2+ and DFT studies

  • Authors

    • Ezhumalai Dhineshkumar Department of Chemistry, Annamalai University, Annamalainagar − 608 002
    • Mathivanan Iyappan Department of Chemistry, Annamalai University, Annamalainagar − 608 002
    • Rajendran Ganapathi Department of Chemistry, Annamalai University, Annamalainagar − 608 002
    • Chinnadurai Anbuselvan Department of Chemistry, Annamalai University, Annamalainagar − 608 002
    2018-02-05
    https://doi.org/10.14419/ijac.v6i1.8896
  • Aldonitrones, Solvaotochromic Absorption, Zn2 Sensor, DFT.
  • Abstract

    New aldonitrones(1-4) were synthesized and characterized by UV-vis, fluorescence, FT-IR, 1H and 13C NMR spectral analyses. The absorption and fluorescence sensing spectra of the compounds were precise in different polarity of solvent. The solvent polarity parameters have been used to propose a quantitative approach towards the reliable stability of the electronic ground and excited state species. Photochemical behaviors of the compounds were analyzed by applying multi-linear correlation methods. The characterized compounds 1-4 show a chemosensing detection of zinc ion in aqueous solution. Besides, the fluorescence spectroscopic responses were reversible when the Zn2+chelating reagentEDTANa2.The phenomenon proves that these compounds to show a sensitivity “on-off†sensor for Zn2+.Further, to recognize the molecular structure, electronic and optical properties and DFT calculations of the molecules were formed.

  • References

    1. [1] Butler O. T., Cook J. M., Harrington C. F., Hill S. J., Rieuwerts J., Miles D. L., 2008, Atomic spectrometry update. Environmental analysis, J. Anal. At. Spectrom, 23, 249. https://doi.org/10.1039/b718954k.

      [2] Yanagida T., Ishii Y., 2009, Single Molecule Dynamics in Life Science; Wiley-VCH: Weinheim, Germany. 328, https://doi.org/10.1002/cbic.200900416.

      [3] Szmacinski H., Gryczynski I., Lakowicz R., 1993, Calcium-dependent fluorescence lifetimes of indo-1 for one- and two-photon excitation of fluorescence, J. Photochem. Photobiol, 58, 341-345. https://doi.org/10.1111/j.1751-1097.1993.tb09571.x.

      [4] Lakowicz J. R., 1983, Principles of Fluorescence Spectroscopy; Plenum Press: New York.https://doi.org/10.1007/978-1-4615-7658-7.

      [5] Czarnik A. W., 1994, Fluorescent Chemosensors for Ion and Molecule Recognition; Instrumantation Science & Technology, Taylor & Francis, UK, 22, 405-406.

      [6] Lakowicz J. R., 1995, Fluorescence spectroscopy of biomolecules. In Encyclopedia of molecular biology and molecular medicine; Meyers, R. A., Ed.; VCH Publishers: New York.

      [7] Dudev T., 2003, Principles governing Mg, Ca, and Zn binding and selectivity in proteins, Chem. Rev., 103 (3), 773-788. https://doi.org/10.1021/cr020467n.

      [8] Laity J. H., Lee B. M., Wright P. E., 2001, Zinc finger proteins: new insights into structural and functional diversity,Curr. Opin. Struct. Biol., 11 (1), 39-46. https://doi.org/10.1016/S0959-440X(00)00167-6.

      [9] Datta B. K., Mukherjee S., Kar C., Ramesh A., Das G., 2013, Zn2+ and pyrophosphate sensing: selective setection in physiological conditions and application in DNA-based estimation of bacterial cell numbers, Anal. Chem., 85 (17), 8369-8375. https://doi.org/10.1021/ac401871t.

      [10] Berg J. M., Shi Y. G., 1996, the galvanization of biology: a growing appreciation of the roles of zinc, Science 271 (5259), 1081-1085. https://doi.org/10.1126/science.271.5252.1081.

      [11] Vallee B. L., Falchuk K. H., 1993, The biochemical basis of zinc physiology, Physiol. Rev., 73(1), 79-118. https://doi.org/10.1152/physrev.1993.73.1.79.

      [12] Scrimgeour A.G, Stahl C. H., McClung J. P., Marchitelli L. J.,Young A. J., 2007, Moderate zinkseficiencynegativety affects biomechanical properties of rat tibiae indepently of body composition, J. Nutr. Biol., 18(12), 813-9. https://doi.org/10.1016/j.jnutbio.2006.12.018.

      [13] (a) Bush A. I., 2000, Metals and neuroscience, Curr. Opin. Chem. Biol., 4(2), 184-191. https://doi.org/10.1016/s1367-5931(99)00073-3.(b) Frederickson C. J., Burdette S. C., Frederickson C. J., Sensi S. L., Weiss J. H., Yin H. Z., Balaji R. V., Truong-Tran A. Q., Bedell E., Prough D. S., Lippard S. J., 2004, Method for identifying neuronal cells suffering zinc toxicity by use or a novel fluorescent sensor,J. Neurosci. Methods, 139(1), 79-89. https://doi.org/10.1016/j.jneumeth.2004.04.033.

      [14] Frederickson C. J., Koh J. Y.,Bush A. I., 2005, The neurobiology of zinc in heaith and disease, Nat. Rev. Neurosci., 6(6), 449-469. https://doi.org/10.1038/nrn1671.

      [15] Bush A. I., Pettingell W. H., Multhaup G., Paradis M., Vonsattel J. P., Gusella J. F., Beyreuther K., Masters C. L., Tanzi R. E., 1994, Rapid induction of alzheimer a beta amyloid formation by zinc, Science., 265(5177), 1464-1470. https://doi.org/10.1126/science.8073293.

      [16] Silva A. P. De., NimalGunaratne H. Q., Gunnlaugsson T., Huxley A. J. M., McCoy C. P., Rademacher J. T., Rice T. E., 1997, Signaling recognition events with fluorescent scensor and switches, Chem.Rev., 97(5), 1515-1566. https://doi.org/10.1021/cr960386p.

      [17] Carol P., Sreejith S., Ajayaghosh A., 2007, Ratiometric and Near-Infrared molecular probes for the detection and imaging of zinc ions, Chem. Asian J., 2(3), 338-348. https://doi.org/10.1002/chin.200722277.

      [18] Kimura E., Aoki S., 2001, Chemistry of zinc (II) fluorophore sensors, BioMetals, 14(3-4), 191-204. https://doi.org/10.1023/A:1012942511574.

      [19] Jiang P., Guo Z., 2004, Fluorescent setection of zinc in biological systems: recent development on the design of chemosensors and bioscensors, Coord.Chem. Rev., 248(1-5), 205-229. https://doi.org/10.1016/j.cct.2003.10.013.

      [20] Que E. L., Domaille D. W., Chang C. J., 2008, Metals in neurobiology: probing their chemistry and biology with molecular imaging, Chem. Rev., 108(5), 1517-1549. https://doi.org/10.1021/cr078203u.

      [21] Hamer J., Macaluso A., 1964, Nitrones, Chem. Rev. 64(4), 473-495. https://doi.org/10.1021/cr60230a006.

      [22] Tufariello J., 1979, Alkaloids from nitrones, J. Acc. Chem. Res., 12(11), 396-403. https://doi.org/10.1021/ar50143a003.

      [23] Black D. St. C., Crozier R. F., Davis V. C., 1975, Organic Synthesis., 8, 205-221.

      [24] Huisgen R., 1963, 1,3-Dipolar cycloadditions. Past and future, Angew. Chem. Int. Ed., 2, 565-598. https://doi.org/10.1002/anie.196305651.

      [25] Hassan A., Wazeer M. I. M., Saeed M.T., Siddiqui M. N., Asrof S. K., 2000, journal of physical organic chemistry., 13(8), 443-451.

      [26] Turfariello J.J., 1984, 1,3-Dipolar cycloaddition chemistry, S. Padwa(Ed) Wiley, NewYark, pp.83-168.

      [27] Turfariello J.J., 1979, Alkaloids from nitrones, Accchem Res., 12(11), 396-403. https://doi.org/10.1021/ar50143a003.

      [28] Kikuchi K., 2010, Design, synthesis and biological application of chemical probes for bio-imaging, Chem. Soc. Rev., 39(6), 2048-2053. https://doi.org/10.1039/b819316a.

      [29] Xu Z., Yoon J., Spring D. R., 2010, Fluorescent chemosensors for Zn(2+),Chem. Soc. Rev., 39(6), 1996-2006. https://doi.org/10.1039/b916287a.

      [30] Quang D. T., Kim J. S., 2010, Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens, Chem. Rev., 110(10), 6280. https://doi.org/10.1021/cr100154p.

      [31] Wu J., Liu W., Ge J., Zhang H., Wang P., 2011, New sensing mechanisms for design of fluorescent chemosensors emerging in recent years, Chem. Soc. Rev., 40, 3483-3495. https://doi.org/10.1039/c0cs00224k.

      [32] Kamlet M. J.Taft R.W., 1976, thesolvatochromic comparison method. I. The .beta.-scale of solvent hydrogen-bond acceptor (HBA) basicities, J. Am. Chem. Soc., 98(2), 377-383. https://doi.org/10.1021/ja00418a009.

      [33] Reichardt C., 2006, Solvents and Solvent Effects in Organic Chemistry, wiley-vch, 3rd, 653.

      [34] Kawski A., Kuklinski B., Bojarski p., 2006, Excited state dipole moments of N,N-dimethylaniline from thermochromic effect on electronic absorption and fluorescence spectra, Chemical physics., 320 (2-3), 188-192. https://doi.org/10.1016/j.chemphys.2005.07.007.

      [35] Ghazy R., Azim S.A., Shaheen M., El-Mekawey F., 2004, Experimental studies on the determination of the dipolemoment of some different layer dyes, Spectrochim.Acta A., 60, 187.

      [36] (a) Kawski A., 2002, on the estimation of excited-state dipole moments from solvatochromic shifts of absorption and fluorescence spectra, Journal of Physical Sciences.,57, 255-262.

      [37] (a) Lippert E., Electrochem Z.,1957, Ber. Bunsenges. Phys. Chem., 61, 962. (b) Lippert E., Naturforsch Z., 1955, Dipolmoment und elektronenstruktur von angergtenmolekulen,Eingegangen am 11.10a, 541-545. https://doi.org/10.1515/zna-1955-0707.

      [38] Husain M. M., Sindhu R., Tandon H.C., 2012, Photophysical properties and estimation of ground and excited state dipole moments of 7-diethylamino and 7-diethylamino-4-methyl comarin dyes from absorption and emission spectra, Eur. J. Chem., 3, 87-93. https://doi.org/10.5155/eurjchem.3.1.87-93.519.

      [39] Gonzalez C., Pole J. A., Frisch M. J., Trucks G.W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery Jr J. A., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Peters G.A., 2004, Gaussian Inc, Wallingford, CT.

      [40] (a) Arockia doss M., Savithiri S., Rajarajan G., Thanikachalam V., Saleem H., 2015, Synthesis, spectroscopic (FT-IR, FT-Raman, UV and NMR) and computational studies on 3t-pentyl-2r,6c-diphenylpiperidin-4-one semicarbazone, SpectrochimicaActa Part., A., 148, 189-202. https://doi.org/10.1016/j.saa.2015.03.117. (b) Arockia doss M., Rajarajan G., Thanikachalam V., Selvanayagam S., Sridhar B., 2017, Synthesis, spectroscopic(UV-Vis, FT-IR and NMR), single crystal XRD of 3,5-diethyl-2,6-di(thiophen-2-yl)piperidine-4-on-1-ium picrate: A comprehensive experimental and compoutational study, J. Mol. Struct., 1128, 268-278. https://doi.org/10.1016/j.saa.2015.03.117.

      [41] (a) Padmaja L., Ravikumar C., Sajan D., Hubert Joe I., Jayakumar V. S., Pettit G. R.,Nielsen O. F., 2009, Density functional study on the structural conformations and intramolecular change transfer from the vibarational spectra of the anticancer drug combretastation-A2, J. Raman Spectrosc., 40, 419. https://doi.org/10.1002/jrs.2145. (b) Tovar R. M., Johnson K. P., Ashline K., Seminario J. M., 2008, Effects of substituents on molecular devices, Int. J. Quantum Chem., 108, 1546-1554. https://doi.org/10.1002/jrs.2145.

      [42] (a) Nakano M., Fujita H., Takahata M., Yamaguchi K., 2002, Theoretical study on second hyperpolarizabilities of phenylacetylene dendrimer: toward an understanding of structure-property relation in NLO responses of fractal antenna dendrimers,J. Am. Chem. Soc., 124 (32), 9648-9655. https://doi.org/10.1021/ja0115969. (b)Geskin V. M., Lambert C.,Bredas J. L., 2003, Origin of high second-and third-order nonlinear optical response in ammonio/borate diphenylpolyene zwitterions: the remarkable role of polarizad aromatic groups,J. Am. Chem. Soc., 125 (50), 15651-15658.https://doi.org/10.1021/ja035862p.

      [43] Sajan D., Hubert Joe I., Jayakumar V. S., Zaleski J., 2006, Structural and electronic contributions to hyperpolarizability in methyl p-hydroxy benzoate, J. Mol. Struct., 785, 43-53. https://doi.org/10.1016/j.molstruc.2005.09.041.(b) Kaatz P., Donley E. A., Shelton D. P., 1998, A comparison of molecular hyperpolarizabilities from gas and lisuis phase measurements, J. Chem. Phys., 108, 849. https://doi.org/10.1016/j.molstruc.2005.09.041.

      [44] Savithiri S., Arockia doss M., Rajarajan G., Thanikachalam V., Bharanidharan S., Saleem H., 2015, Spectroscopic (FT-IR, FT-Raman) and quantum mechanical studies of 3t-pentyl-2r,6c-diphenylpiperidine-4-one thiosemicarbazone, Spectrochim. Acta Part A., 136, 782.https://doi.org/10.1016/j.saa.2014.09.095.

  • Downloads

    Additional Files

  • How to Cite

    Dhineshkumar, E., Iyappan, M., Ganapathi, R., & Anbuselvan, C. (2018). Synthesis photophysical studies of some furfurylnitrones: high-ly selective chemosensors for Zn2+ and DFT studies. International Journal of Advanced Chemistry, 6(1), 37-45. https://doi.org/10.14419/ijac.v6i1.8896

    Received date: 2017-12-21

    Accepted date: 2018-01-22

    Published date: 2018-02-05