Structural investigation of sparfloxacin drug using mass spec-trometry and MNDO semi-empirical molecular orbital calcu-lations

Authors

  • Mamoun Sarhan Mahmoud Abd El-kareem Egyptian Atomic Energy Authority
  • Mohamed ElDesawy Egyptian Atomic Energy Authority
  • Mohamed Hawash Egyptian Atomic Energy Authority
  • Magd El dain Fahmy Ahmed Egyptian Atomic Energy Authority

DOI:

https://doi.org/10.14419/ijac.v6i1.9177

Published:

2018-03-01

Keywords:

Sparfloxacin, Mass Spectrometry and Semi-Empirical Molecular Orbital Calculations.

Abstract

Sparfloxacin is a broad spectrum antibacterial fluoroquinolone against some microorganisms including gram-positive and gram-negative bacteria and exhibits moderate activity against anaerobes and mycobacteria. Sparfloxacin is well tolerated and the intake of food has no adverse effect on the pharmacokinetic features (Blondeau 1999, Stahlmann et al. 1998). For the medical important of this drug author have been study its structure by recording and investigate its electron ionization (EI) mass spectra at different electron energies 70 and 15 eV. Also, the chemical ionization (CI) mass spectrum has been recorded and investigated. The main fragmentation processes in EI and CI have elucidated and discussed. The main fragment ions in EI mass spectra are [M-C4H8N] + and fragment [M- C4H8N- CO2] +, while [MH- CO2]+ ion are the most fragment ion in CI mass spectrum. On the other hand, the molecular structure optimization of sparfloxacin was calculated using the modified neglect of diatomic overlap (MNDO) semi-empirical molecular orbital method. Also, the thermochemical data such as heat of formations, total energy, ionization energy, electron affinity and dipole moment have been calculated and discussed.

References

[1] Blondeau, J. M. (1999) Expanded activity and utility of the new fluoroquinolones: A review, Clinical Therapeutics. 21, 3-40 https://doi.org/10.1016/S0149-2918(00)88266-1.

[2] Stahlmann, R., Zippel, U., Förster, C., Schwabe, R., Shakibaei, M., Merker, H.J. and Borner, K. (1998) chondrotoxicity and toxicokinetics of sparfloxacin in juvenile rats, antimicrob. agents. Chemother, 42:6, 1470-1475.

[3] Singh, R. Pandey, V. K. and Srimal, R. C. (1992) synthesis of "1-2'-(5'-alkyl-1', 3, 4’-thiadiazolyl)-2-methyl-4-(2"-phenyl-indole-3"- yl)-methylene-imidazole-5-ones" as CVS, CNS and anti-inflammatory agents. Indian J. Pharm. Sci, 54(1): 4-9.

[4] David, W. Henry in R.M. Acheson (Ed.), (1972) “ Heterocyclic Compoundsâ€vol.9, p815, Interscience Publishers, New York.

[5] Libel, R., Randle, R., Mildenberger, H., Bauer, K. and Biernger H, (1988) Chen Abstr, 108(1), 6018.

[6] Menon, C.S., Robert, K.Y., Zee-Cheng and C. C. Cheng (1977) synthesis of dimethoxybenz[g]isoquinolines J. of Heterocyclic Chem.. 14,909-915.

[7] Christos, A., Alexandros, M., Zografos, L. and Olga, Igglessi-M. (2003) An Efficient Route to 3-aryl-aubstituted quinolin-2-one and 1, 8-naphthyridin-2-one derivatives of pharmaceutical interest. Org Chem., 68, 4567-4569. https://doi.org/10.1021/jo0340051.

[8] Jain, S., Jain, N.K. and Pitre, K.S. J.,(2002) Electrochemical analysis of sparfloxacin in pharmaceutical formulation and biochemical screening of its Co(II) complex, Pharm. Biomed Anal., 29,795-801. https://doi.org/10.1016/S0731-7085(02)00178-4.

[9] Marona, H.R.N. and Schapoval, E.E.S., (2001) Spectrophotometric determination of sparfloxacin in pharmaceutical formulations using bromothymol blue, J. Pharm. Biomed Anal., 26, 501-504. https://doi.org/10.1016/S0731-7085(01)00429-0.

[10] Faria, A.F., de Souza, M.V.N., de Almeida, M.V. and de Oliveira, M. A. L., (2006) Simultaneous separation of five fluoroquinolone antibiotics by capillary zone electrophoresis, Anal. Chim. Acta, 579, 185-192. https://doi.org/10.1016/j.aca.2006.07.037.

[11] Maronaab, H.R.N. and Schapoval, E.E.S. (1999) A high-performance liquid chromatographic assay for sparfloxacin, J. Pharm. Biomed Anal., 20, 413-417. https://doi.org/10.1016/S0731-7085(98)00102-2.

[12] Ziyu, P., Jingdong, P., Xu, Z. Huanjun, P., Huan, X., Lingli, B., Fang, C., Yan, H., Yu, C., Xiang, W., Shiyu, L. and Yi, Chen.,(2017) High performance liquid chromatography study of gatifloxacin and sparfloxacin using erythrosine as postcolumn resonance rayleigh scattering reagent and mechanism study, Luminescence.1–8.

[13] CaO,S.X.,Zhang,J.Y.andLiu,H.M.(2001) Quantitative analysis of sparfloxacin injection by high performance liquid chromatographyâ€, Chinese J. Chromatogr.,19, 454-456.

[14] Sun, S.W. and Wu, A.C. (1999) Determination of fluoroqinolone antibacterials in pharmaceutical formulations by capillary electrophoresis, J. Liq. Chromatogr. Relat. Technol., 22, 281-296. https://doi.org/10.1081/JLC-100101660.

[15] Fierrens, C., Hillaert, S. and Bossche, W.V. (2000) the qualitative and quantitative determination of quinolones of first and second generation by capillary electrophoresis, J. Pharm. Biomed. Anal., 22, 763-772. https://doi.org/10.1016/S0731-7085(99)00282-4.

[16] Askal, H., Refaat, I., Darwish, I. and Marzouq, M. (2007) Evaluation of N-Bromosuccinimide as a New Analytical Reagent for the Spectrophotometric Determination of Fluoroquinolone Antibiotics, Chem. Pharm. Bull., 55, 1551-1556. https://doi.org/10.1248/cpb.55.1551.

[17] El-Didamony, A. M. (2007) spectrophotometric setermination of sparfloxacin in pharmaceutical preparations by ternary complex formation with Pd (II) and eosin, Anal. Lett. , 40, 2708-2720. https://doi.org/10.1080/00032710701588408.

[18] Chowdary,K.P.R.andRao,G.D.(1997) spectrophotometric method for the determination of lomefloxacin hydrochlorideâ€, Indian drugs., 34, 107-110.

[19] Vegad, K. L., Dani, N.H., Shah, D. A., Patel, E.D., Patel, Y. K. and Patel. K. R. (2017) absorption correlation method for simutaneous estimation of sparfloxacin and dexamethasone in spard tablet dosage form, Pharma Science Monitor. 8 (3), 267-281.

[20] Rizk, M., Belal, F., Ibrahim, F., Ahmed, S., and El-Enany. N. (2000) spectrofluorimetric analysis of certain 4-quinolone in pharmaceuticals and biological fluids, Pharmaceu. Acta Helvetiae., 74, 371-377. https://doi.org/10.1016/S0031-6865(00)00025-X.

[21] Du, L.M., Zhou, J., Xu, Q.Q., Fan, Z.F.,and Yuan, R.(2000) Study on fluorescence property of sparfloxacin derivatizing system and its applicationChin. Chem.Lett, 11, 255-258.

[22] Jasmin, S., Rasul Jan, M., Inayatullah, and Sultan, S.,(2012) Sensitive spectrofluorimetric and spectrophotometric methods for determination of sparfloxacin in pharmaceuticals, J. Mex. Chem. Soc. 256(2), 109-114

[23] Urszl K.K., Radosław, S., Katarzyna, G. R., Gabriela, B. P., Agnieszka,K. and Małgorzata, J.B.,(2015) Phosphine derivatives of sparfloxacin – Synthesis, structures and in vitro activity, J. Mol. Struct.,1096,55-63. https://doi.org/10.1016/j.molstruc.2015.04.044.

[24] Sultan, S.M., Alzamil, I.Z., Alrahman, A.M.A., Altamrah, S.A. and Asha, Y.(1986) Use of cerium(IV) sulphate in the spectrophotometric determination of paracetamol in pharmaceutical preparations, Analyst., 111, 919-921. https://doi.org/10.1039/an9861100919.

[25] Koukli, I.I., Calokerinos, A.C. and Hadjiioannou, T.P., (1989) Continuous-flow chemiluminescence determination of acetaminophen by reduction of cerium (IV), Analyst, 114, 711-714. https://doi.org/10.1039/an9891400711.

[26] Martínez Calatayud, J. and Garcia Mateo, V. (1992) Cerium (IV) arsenite as a solid-phase reactor for use in flow-injection analysis. Spectrophotometric determination of promethazine, Anal. Chim. Acta, 264, 283–289. https://doi.org/10.1016/0003-2670(92)87016-E.

[27] Perez-Rinz, T., Martinez-Lozano, C., Tomas, V. and Sidrach de Cardona, C. (1993) Flow-injection fluorimetric determination of trimeprazine and trifluoperazine in pharmaceutical preparations Talanta, 40, 1361-1365. https://doi.org/10.1016/0039-9140(93)80211-9.

[28] Alwarthan, A.A. (1995) Chemiluminescent determination of tryptophan in a flow injection system, Anal. Chim. Acta, 317, 233-237. https://doi.org/10.1016/0003-2670(95)00390-8.

[29] Aly, F.A., Alarfaj, N.A. and Alwarthan, A.A. (1998) Flow-injection chemiluminometric determination of some phenothiazines in dosage forms and biological fluids, Anal. Chim. Acta, 358, 255-262. https://doi.org/10.1016/S0003-2670(97)00622-3.

[30] Adegoke, O.A. and Balogun, B.B.(2010) Spectrophotometric determination of some Quinolones antibiotics following oxidation with cerium sulphateâ€, Int. J. Pharm. Sci. Rev. Res.,4, 1-10.

[31] Mahendra, K., Trivedi, A. B., Dahryn, T., Harish, S., Khemraj, B. and Snehasis, J., (2015) fourier transform infrared and ultraviolet-Visible spectroscopic characterization of biofield treated salicylic acid and sparfloxacin, Nat.Prod. Chem. Res. 3(5), 1-6.

[31]

[32] W.Thiel, (2003) “Handbook of Molecular Physics and Quantum Chemistry†(Ed. S. Wilson), Bd. 2, Wiley, Chiceste,page 487.

[33] HyperChemTM, Release 7.5 Pro for Windows, “Molecular Modeling Systemâ€, Hypercube, :User Evaluation copy, Organization: Evaluation copy, Dealer:Copyright©2002 Hypercube,Inc, Serial No.99-999-9999999999

[34] Alison, E. A.,‎ Neil, W. B.(1997) Ionization Methods in Organic Mass Spectrometry, Royal Society of Chemistry publisher; 1 edition (December 31, 1997) p.20. North Yorkshite, UK

[35] Brian, A.E.,Scott A.M. and Gary L.G.(1991) Comparison of electron ionization and chemical ionization sensitivities in an ion trap mass spectrometer, Int. J. Mass Spectrom. Ion Process, 106, 137-157 https://doi.org/10.1016/0168-1176(91)85015-E.

[36] Munson, B. (2000) Development of chemical ionization mass spectrometry, Int. J. Mass Spectrom.200, 243-251. https://doi.org/10.1016/S1387-3806(00)00301-8.

View Full Article: