Theoretical investigations of ZnO/CdO material – A DFT approach

  • Authors

    • Rackesh Jawaher BS Abdur Rahman Crescent Institute of Science and Technology, Chennai - 600048
    • Indirajith R B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai
    • Krishnan S Ramakrishna Mission Vivekananda College (Autonomous), Chennai
    • Bharanidharan Bharani Bharath Institute of Higher Education and Research, Bharath University, Chennai
    • Robert R Government Arts College for Men, Krishnagiri
    • Jerome Das S Loyola College, Chennai
    2018-03-10
    https://doi.org/10.14419/ijac.v6i1.9312
  • ZnO/CdO, DFT Study, NLO, NBO, MEP.
  • Abstract

    The theoretical investigations of ZnO/CdO material were carried out by using ab initio calculations. The bond parameters such as bond lengths, bond angles and dihedral angles were calculated at DFT/B3LYP/LANL2DZ level of theory. The NLO property of the title molecule was calculated using a first order hyperpolarizability calculation. NBO study reveals that the hyperconjucative
    interactions between the material. Homo-Lumo analysis the charge transfer occurs within the molecule. MEP surface predicts the reactive sites of the present molecule. In addition of Mulliken atomic charges and thermodynamic parameters were also plotted and calculated.

  • References

    1. [1] Chong, X., Li, L., Yan, X., Hu, D., Li, H., & Wang, Y. (2012).
      Synthesis, characterization and room temperature
      photoluminescence properties of Al doped ZnO nanorods. Physica E: Low-Dimensional Systems and Nanostructures, 44(7-8),
      1399–1405. https://doi.org/10.1016/j.physe.2012.03.001.

      [2] Tsai, D.-S., Lin, C.-A., Lien, W.-C., Chang, H.-C., Wang, Y.-L., & He, J.-H. (2011). Ultra-High-Responsivity Broadband Detection of Si Metal–Semiconductor–Metal SchottkyPhotodetectors Improved by ZnO Nanorod Arrays. ACS Nano, 5(10), 7748–7753. https://doi.org/10.1021/nn203357e.

      [3] Zhang, J., Wang, S., Xu, M., Wang, Y., Zhu, B., Zhang, S., & Wu, S. (2009). Hierarchically Porous ZnO Architectures for Gas Sensor Application. Crystal Growth & Design, 9(8), 3532–3537. https://doi.org/10.1021/cg900269a.

      [4] Wang, L., Lou, Z., Fei, T., & Zhang, T. (2012). Templating
      synthesis of ZnO hollow nanospheres loaded with Au nanoparticles and their enhanced gas sensing properties. Journal of Materials Chemistry, 22(11), 4767-4771.https://doi.org/10.1039/c2jm15342d.

      [5] Na, C. W., Woo, H.-S., Kim, I.-D., & Lee, J.-H. (2011). Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO
      nanowire network sensor. Chemical Communications, 47(18), 5148-5150.https://doi.org/10.1039/c0cc05256f.

      [6] Wen, W., Wu, J.-M., & Wang, Y.-D. (2013). Gas-sensing property of a nitrogen-doped zinc oxide fabricated by combustion synthesis. Sensors and Actuators B: Chemical, 184, 78–84. https://doi.org/10.1016/j.snb.2013.04.052.

      [7] Jayakrishnan, R., & Hodes, G. (2003). Non-aqueous
      electrodeposition of ZnO and CdO films. Thin Solid Films,
      440(1-2), 19–25. https://doi.org/10.1016/S0040-6090(03)00811-3.

      [8] Kanjwal, M. A., Barakat, N. A. M., Sheikh, F. A., & Kim, H. Y. (2009). Electronic characterization and photocatalytic properties of TiO2/CdO electrospunnanofibers. Journal of Materials Science, 45(5), 1272–1279. https://doi.org/10.1007/s10853-009-4078-3.

      [9] Karami, H. (2010). Investigation of sol-gel synthesized CdO-ZnO nanocomposite for CO gas sensing. Int. J. Electrochem. Sci, 5,
      720-730.

      [10] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A. (2004). Theoretical and Computational Aspects of Magnetic Organic Molecules. Gaussian Inc, Wallingford, CT.

      [11] Schlegel, H. B. (1982). Optimization of equilibrium geometries and transition structures. Journal of Computational Chemistry, 3(2), 214–218. https://doi.org/10.1002/jcc.540030212.

      [12] Scott, A. P., & Radom, L. (1996). Harmonic Vibrational
      Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset,
      Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. The Journal of Physical
      Chemistry, 100(41), 16502–16513. https://doi.org/10.1021/ jp960976r.

      [13] Irikura, K.K. (2002). THERMO.PL, National Institute of Standards and Technology.

      [14] Andraud, C., Brotin, T., Garcia, C., Pelle, F., Goldner, P., Bigot, B., & Collet, A. (1994). Theoretical and experimental investigations of the nonlinear optical properties of vanillin, polyenovanillin, and bisvanillin derivatives. Journal of the American Chemical Society, 116(5), 2094–2102. https://doi.org/10.1021/ja00084a055.

      [15] Zhang, C. R., Chen, H. S., & Wang, G. H. (2004). Chem. Res. Chin, 20, 640-646.

      [16] Kleinman, D. A. (1962). Nonlinear Dielectric Polarization in
      Optical Media. Physical Review, 126(6), 1977–1979. https://doi.org/10.1103/PhysRev.126.1977.

      [17] Reed, A. E., & Weinhold, F. (1983). Natural bond orbital analysis of nearâ€Hartree–Fock water dimer. The Journal of Chemical
      Physics, 78(6), 4066–4073. https://doi.org/10.1063/1.445134.

      [18] Reed, A. E., & Weinhold, F. (1985). Natural localized molecular orbitals. The Journal of Chemical Physics, 83(4), 1736–1740. https://doi.org/10.1063/1.449360.

      [19] Reed, A. E., Weinstock, R. B., & Weinhold, F. (1985). Natural
      population analysis. The Journal of Chemical Physics, 83(2),
      735–746. https://doi.org/10.1063/1.449486.

      [20] Foster, J. P., & Weinhold, F. (1980). Natural hybrid orbitals.
      Journal of the American Chemical Society, 102(24), 7211–7218. https://doi.org/10.1021/ja00544a007.

      [21] Chocholoušová, J., Špirko, V., & Hobza, P. (2004). First local
      minimum of the formic acid dimer exhibits simultaneously red-shifted O–H⋯O and improper blue-shifted C–H⋯O hydrogen bonds. Phys. Chem. Chem. Phys., 6(1), 37–41. https://doi.org/10.1039/B314148A.

      [22] Fleming, I. (1976). Frontier Orbitals and Organic Chemical
      Reactions, John Wiley and Sons, New York, 5–27.

      [23] Diener, M. D., & Alford, J. M. (1998). Isolation and properties of small-bandgap fullerenes. Nature, 393 (6686), 668–671. https://doi.org/10.1038/31435.

      [24] Scrocco, E., & Tomasi, J. (1978). Electronic molecular structure, reactivity and intermolecular forces: a neuristic interpretation by means of electrostatic molecular potentials. In Advances in
      quantum chemistry, 11, 115-193. https://doi.org/10.1016/S0065-3276(08)60236-1.

      [25] Okulik, N., & Jubert, A. H. (2005). Theoretical analysis of the
      reactive sites of non-steroidal anti-inflammatory drugs. Internet Electronic Journal of Molecular Design, 4(1), 17-30.

      [26] Thul, P., Gupta, V. P., Ram, V. J., & Tandon, P. (2010). Structural and spectroscopic studies on 2-pyranones. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75(1), 251–260. https://doi.org/10.1016/j.saa.2009.10.020.

      [27] Ott, J. B., & Boerio-Goates, J. (2000). Introduction. Chemical Thermodynamics: Principles and Applications, 1–36. https://doi.org/10.1016/B978-012530990-5/50002-X.

  • Downloads

  • How to Cite

    Jawaher, R., R, I., S, K., Bharani, B., R, R., & S, J. D. (2018). Theoretical investigations of ZnO/CdO material – A DFT approach. International Journal of Advanced Chemistry, 6(1), 79-84. https://doi.org/10.14419/ijac.v6i1.9312

    Received date: 2018-01-29

    Accepted date: 2018-03-05

    Published date: 2018-03-10