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Abstract 

 

This work is aiming at analyzing the vorticity vector in 2D of deformable inclusions with the help of analytical techniques. The consider-

ations made are first, inclusions are initially spherical, deformable; second, strain distribution within the inclusions are not homogeneous . 

The ratio of inclusion diameter (“a”) to mean inter-inclusion distance (“b”) that is (a/b) is less than about 0.6 .Considering ‘strain rate’ as 

natural strain the rate is infinitesimally small . Vorticity of particles inside the inclusions is also estimated while accounting different 

competency contrast conditions between matrix and inclusions. It is seen that competency contrast is inversely proportional to the 

vorticity value. Also after a threshold value the vorticity spin becomes opposite in directional sense. Probable reasons for this hiatus are 

discussed. 
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1. Introduction 

Previously many workers have shown keen interest in both rigid 

and deformable as well as single and multiple inclusions under 

shearing. In the beginning of twenty first century, precisely be-

tween (2000 to 2005) some developments on this topic took place. 

Numerical methods were introduced with previous analogue mod-

elling approaches. It was established the geometry of the inclusion 

whether rigid or deformable is strongly guided by the heterogene-

ous flow field in and around inclusions (Samanta et al, 2002). 

Experimental physical modelling related to this topic and consecu-

tive micro-structural analysis was carried out by structural geolo-

gists all over the world (Piazolo and Passchier, 2002) both under 

simple shear (Samanta , 2003) and in pure shear (Mandal , 2003). 

There was huge enlightenment on the flow patterns around the 

inclusions and their emphasis on the deformation (Mandal et al., 

2005; Samanta et al., 2003). Also emphasis was shown on both in-

field and outer-field viscous flow (Jiang, 2006). First ever rota-

tional kinematical approach was made by Mandal. Et al., 2005 but 

it was about predominantly bulk rotation of the inclusion. First 

approach on far field vorticity was made by Marques et al 2007. 

As time progressed the numerical approach became more and 

more advanced (Schmid, 2002; Davis et al, 2013). The vorticity 

could be determined by marking the particles of the medium in a 

small neighborhood of the point in question, and watching their 

relative displacements as they move along the flow. In fluid dy-

namics, the vorticity is a pseudo-vector field that describes the 

local spinning motion of a fluid near some point, as would be seen 

by an observer located at that point and traveling with the fluid. 

The Vorticity vector would be twice the mean angular velocity 

vector of those particles about their center of mass, oriented ac-

cording to the right-hand rule.  

2. Methodology 

Deformation of a particle present within any multiple ductile in-

clusions under pure shear deformational condition is estimated. 

The considerations made are: (1) Inclusions are initially spherical, 

ductile and deformable. (2) The ratio of inclusion diameter (“a”) 

to mean inter-inclusion distance (“b”) that is (a/b) is less than 

about 0.6. For a given value of “m” (viscosity ratio between inclu-

sion and matrix), strain partitioning between a stiff inclusion and 

bulk system (i.e. the ratio of their natural extension rates) increas-

es non-linearly with increasing a/b ratios and the gradient of in-

crease becomes steeper when the inter-inclusion distance is less 

than about twice their diameter (i.e. a/b >about 0.5). The strain 

distribution within a deformed inclusion is homogeneous when the 

a/b ratio is less than about 0.6. (3) At the time of expressing ‘strain 

rate’ it is considered the shortening took place in negligible time. 

A system of deformable, spherical inclusions of diameter 2a 

within a Newtonian viscous matrix with coherent interfaces is 

considered (Fig. 1). The inclusions are uniformly distributed with 

their centres spaced at an interval of 2b. The system is subjected to 

pure shear deformation at a rate (ԑ˙). To describe the flow field 

around an inclusion, a Cartesian coordinate frame is chosen at the 

centre of an inclusion with the x axis parallel to the bulk extension 

direction, y axis along the direction of principal shortening, and z 

axis along the direction of no bulk flow (Fig. 1). Lamb’s 

(1932)method of analysis is adopted in this case that expresses the 

velocity field in terms of solid harmonic functions, and the veloc-

ity functions are derived in only two dimensions for flow inside an 

inclusion in a multiple inclusion system . In the numerical analy-

sis, the velocity functions are considered on a two-dimensional 

section perpendicular to the direction of no bulk strain. In Fig1 (a) 

Model of the inclusion–matrix system under theoretical considera-

tions is shown. In Fig1 (b) the consideration of Cartesian and 

spherical coordinates on the central section of an inclusion normal 

to the direction of no bulk flow (z axis) is shown; where (ԑ˙): pure 
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shear rate of bulk deformation, 2a: diameter of inclusions (shaded) 

and 2b: average inter-inclusion distance. (After Mandal et al, 

2003) 

 

 
Fig. 1: (A) Model of the Inclusion–Matrix System under Theoretical Con-
siderations. (B) Consideration of Cartesian and Spherical Coordinates on 

the Central Section of an Inclusion Normal to the Direction of No Bulk 

Flow (Z Axis). (Ԑ˙): Pure Shear Rate of Bulk Deformation. 2a: Diameter of 
Inclusions (Shaded) and 2b: Average Inter-Inclusion Distance. (After 

Mandal Et Al, 2003) 

3. Equations 

Velocity components of flow inside the inclusions are as follows, 

In “X” direction-   
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In “Y” direction-   
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(Mandal et al, 2003) 

Where r²=x²+y² and a is the radius of inclusion. A , B  , I, J, L are 

constants, the expressions for which involve the ratio of inclusion 

diameter and mean inter- inclusion distance (a/b) and the viscosity 

ratio between inclusion and matrix (m) [Eq.(iii) to Eq.(vii) ] . The 

velocity functions in Equation (i) and (ii) reflect the nature of 

deformation of an inclusion in inclusion-matrix systems. In these 

equations, A  becomes nearly zero when the a/b ratio is extremely 

low, indicating a homogeneous deformation inside the inclusion as 

in the case of a single inclusion system (cf. Eshelby, 1957; Gay, 

1968a). But, A  becomes a non-zero quantity for higher values of 

a/b, implying that the deformation is heterogeneous when the in-

clusions are closer to one another in the system. 

 This work estimates the vorticity along the radius of the inclusion 

under pure shear conditions and to show how it varies according 

to different assigned values of viscosity ratio between inclusion 

and matrix (m). 

The working formula for vorticity calculation is very simple. 

  
 

 
 
  

  
 

  

  
                                                                         (viii) 

Where w= vorticity vector 

4. Results 

In this work vorticity along the radius of the inclusion is estimated 

under pure shear compression with varying viscosity ratio between 

matrix and inclusions of the system. The “m” value assigned is 5, 

10, 20 and 40. In Fig 2 the fluctuation of the vorticity vector along 

the radius of an inclusion with respect to different viscosity ratios 

“m” is monitored. When “m” value is lower (5-10) the vorticity is 

positive but when “m” value is relatively larger (20-40) then the 

vorticity becomes negative or opposite to that of previous case. 

From the graph of Fig 2 the change in vorticity values with respect 

to different “m” values are clearly seen. The fluctuation of vortic-

ity value along the radius of a deformable inclusion for a fixed 

“m” value is very low which is evident from the figure. In the 

figure variation of vorticity value is shown with respect to incre-

mental change of the polar co-ordinate of the system(r). In this 

case vorticity within the inclusion is calculated, so “r” value is 

taken in such small increment and up to limited extent.  

 

 
Fig. 2: Variation of Vorticity for Different Viscosity Ratios (M) Across the Inclusion with Incremental “R” 
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5. Conclusion  

From this analytical work several inferences can be drawn from 

the graphical representations. Firstly, change in vorticity with 

increasing radius is low as indicated by the gentle slopes of the 

given curves. Secondly, vorticity decreases with increasing radius 

of the inclusion although there might be an exception if competen-

cy contrast is very high. Thirdly, two opposite senses of rotation 

are observed. Lastly the overall value of vorticity increases as the 

viscosity ratio between inclusion and matrix (m) decreases alt-

hough there might be any departure from this behavior at very 

high values of 'm'. The change in rotational sense with increasing 

viscosity contrast between matrix and inclusion “m” can be sub-

jected by occurrence of prominent change in bulk rheology of the 

block with increasing “m”. At lower values of “m” the vorticity 

value is positive which implies that the velocity gradient along 

“X” axis is higher than “Y” axis. Inversely at higher values of “m” 

the values of vorticity become negative which implies that veloc-

ity gradient along “Y” axis exceeds the value of “X” axis. These 

two exactly opposite behaviour of material can only be justified by 

rheological terms as it results due to change of response of the 

material under equal stress. So change in bulk rheology depending 

upon the value of “m” can only be the controlling factor for differ-

ent response of apparently similar material under same stress. But 

it is to be mentioned that the limitation of this study is that the 

(a/b) ratio should be always less than 0.6 which indicates a com-

pact packing of inclusions. 
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