Diagenesis and reservoir quality evolution of the paleogene sokor1 sandstones in the agadem block, termit basin, eastern Niger

  • Authors

    • HAMMA ADA Moussa Abdou Moumouni University of Niamey/Niger
    • MOUSSA Harouna Abdou Moumouni University of Niamey/Niger
    2019-10-02
    https://doi.org/10.14419/ijag.v7i2.29562
  • Dissolution, Illite-Smectite Ratio, Reservoir Quality, Sandstone Diagenesis, Termit Basin.
  • Abstract

    The Paleogene Sokor1 Formation in Termit Basin is recognized as the most important hydrocarbon reservoir. However, in spite of its reservoir importance, published studies on its diagenetic process and their effects on reservoir quality are absent or limited. Petrographic analysis, scanning electron microscopy and X-ray diffraction were used to assess diagenetic characteristics, controls on reservoir and reservoir quality of Sokor1 Formation. The Sokor1 sandstones are mostly quartz sandstone, lithic quartz-arenite and rarely lithic fedspathic-quartz-arenite, with an average mass fraction of quartz 95%, feldspar 1.6% and rock fragments 3.4% (Q95F1.6R3.4). Diagenetic processes in Sokor1 sandstones include mechanical compaction, cementation, dissolution and replacement. The main authigenic minerals are quartz overgrowth and clay minerals, which occur as pore-filling and pore-lining cements. Sokor1 sandstone has undergone stages A and B of eodiagenesis and now, it is experiencing stage A of mesodiagenesis. The widespread occurrences of quartz overgrowth suggest that Sokor1 sandstones lost a significant amount of primary porosity during its diagenetic history. Secondary porosity occurred due to partial and complete dissolution of feldspar, quartz grains and rock fragments, so increasing reservoir quality. The latter is predominantly controlled by depositional environment controls on grains size, sorting and matrix. Thus, reservoirs of best quality were deposited in braided river channel environments. In addition, oil accumulation has no discernable effects on porosity and oil probably entered the reservoir at late diagenetic stage, after quartz overgrowth and authigenic cements had already occurred.

     

     

  • References

    1. [1] Abouessa A & Morad S, (2009) An integrated study of diagenesis and depositional facies in tidal sandstones: Hawaz Formation (Middle Ordovician), Murzuq Basin, Libya. J Pet Geo 32, 39-66. https://doi.org/10.1111/j.1747-5457.2009.00434.x.

      [2] Ãlvarez-Iglesias P & Rubio B, (2012) early diagenesis of organic-matter-rich sediments in ría environment: Organic matter sources, pyrites morphology and limitation of pyritization at depth. Estuarine, Coastal and Shelf Science 100, 113-123. https://doi.org/10.1016/j.ecss.2012.01.005.

      [3] Anketel J.M (1996) Structural History of the Sirt Basin and its relationships to the Sabratah Basin and Cyrenaican Platform, Northern Libya. In Salem M.J, El-Hawat A.S & Sbeta A.M (eds), The Geology of Sirt Basin Volume II, Elsevier, Amsterdam, pp. 57-87.

      [4] Barclay S.A & Worden R.H (2000) geochemical modelling of diagenetic reactions in a sub-arkosic sandstone. Clay Minerals, v. 35, no. 1, 57-67. https://doi.org/10.1180/000985500546729.

      [5] Berger G, Lacharpagne J.C, Velde B, Beaufort D, & Lanson B (1997) Kinetic constraints on illitization reactions and the effects of organic diagenesis in sandstone/shale sequences. Applied Geochemistry, 12, 23-35. https://doi.org/10.1016/S0883-2927(96)00051-0.

      [6] Berner R.A (1981) Authigenic mineral formation resulting from organic matter decomposition in modern sediments. Fortschritte der Mineralogie 59, 117-135.

      [7] Binks R.M & Fairhead J.D (1992) A plate tectonic framework for the evolution of the Cretaceous rift basins in West and Central Africa. In Ziegler P.A (Editor), Geodynamics of Rifting, Volume II Case History studies on Rifts: North and South America, Africa-Arabia. Tectonophysics 213, pp. 141-151. https://doi.org/10.1016/B978-0-444-89912-5.50034-X.

      [8] Bliefnick D.M & Kaldi J.G (1996) Pore geometry: control on reservoir properties, Walker Creek Field, Columbia and Lafayette counties, Arkansas. AAPG Bulletin 80, 1027-1044. https://doi.org/10.1306/64ED8C82-1724-11D7-8645000102C1865D.

      [9] Boggs S.J (2009) Petrology of Sedimentary Rocks, 2nd ed. Cambridge University Press, Cambridge UK, p. 600. https://doi.org/10.1017/CBO9780511626487.

      [10] Chang E & Zung L.S (2017) 3D Reservoir Characterization of Field Deta, Termit Basin, Niger. Springer Singapore, 323-335, https://doi.org/10.1007/978-981-10-3650-7_28.

      [11] Daly M.C, Chorowicz J & Fairhead J.D (1989) Rift basin evolution in Africa: the influences of reactivated steep basement shear zones. Geological Society, London, Special Publications vol. 44, 309-334. https://doi.org/10.1144/GSL.SP.1989.044.01.17.

      [12] Dutton S.P (2008) Calcite cement in Permian deep-water sandstones, Delaware Basin, west Texas: Origin, distribution, and effect on reservoir properties. AAPG Bulletin, v. 92, 765-787. https://doi.org/10.1306/01280807107.

      [13] Ehrenberg S.N (1993) Preservation of anomalously high porosity in deeply buried sandstones by grain-coating chlorite: examples from the Norwegian continental shelf. AAPG Bull., 77, 1260-1286. https://doi.org/10.1306/BDFF8E5C-1718-11D7-8645000102C1865D.

      [14] Emery D, Smalley P.C, Oxtoby N.H, Ragnarsdottir K.V, Aagaard P, Halliday A, Coleman M.L, & Petrovich R (1993) Synchronous oil migration and cementation in sandstone reservoirs demonstrated by quantitative description of diagenesis [and discussion]: Philosophical Transactions of the Royal Society of London. Series A. Physical and Engineering Sciences, v. 344, no. 1670, 115-125. https://doi.org/10.1098/rsta.1993.0080.

      [15] Fairhead J.D (1986) Geophysical controls on sedimentation in the African Rift Systems. In Frostick L.E, Renaut R.W, Reid I, & Tiercelin J.J (Editors), Sedimentation in the African Rifts. Geol. Soc. London Spec. Publ. 25, 19-27. https://doi.org/10.1144/GSL.SP.1986.025.01.03.

      [16] Fairhead J.D (1988) Mesozoic plate tectonic reconstructions of the central South Atlantic Ocean: The role of the West and Central African rift system. Tectonophysics, 155, 181-191 https://doi.org/10.1016/0040-1951(88)90265-X.

      [17] Fairbridge R.W (1967) Phases of Diagenesis and Authigenesis. In Larsen G & Chilingar C.V (Eds.) Diagenesis in Sediments. Elsevier, Amsterdam, pp. 91 - 125. https://doi.org/10.1016/S0070-4571(08)70841-0.

      [18] Faure H (1966) Reconnaissance géologique des formations sédimentaires post paléaezoïques du Niger oriental. Memoires du Bureau de Recherches Géologiques et Minieres, vol. 47, 629.

      [19] Genik G.J (1992) Regional framework, structural and petroleum aspects of rift basins in Niger, Chad, and the Central African Republic. Tectonophysics 213 (1-2), 169-185. https://doi.org/10.1016/0040-1951(92)90257-7.

      [20] Genik G.J (1993) Petroleum Geology of Cretaceous-Tertiary rift basins in Niger, Chad and Central African Republic. AAPG Bull. 77 (8), 1405-1434. https://doi.org/10.1306/BDFF8EAC-1718-11D7-8645000102C1865D.

      [21] Gluyas J.G, Grant S.M, & Robinson A.G (1993a) geochemical evidence for a temporal control on sandstone cementation. In Horbury A. D & Robinson A.G (eds.), Diagenesis and basin development. American Association of Petroleum Geologists Studies in Geology v. 36, 23-33.

      [22] Guiraud R, Bellion Y, Benkhelil J & Moreau C (1987) Post-Hercynian tectonics in Northern and Western Africa. Geological Journal vol. 22 thematic issue, 433-466. https://doi.org/10.1002/gj.3350220628.

      [23] Guiraud R. & Maurin J.C (1991) Le rifting en Afrique au Crétacé inférieur: synthèse structurale, mise en évidence de deux étapes dans la genèse des bassins, relations avec les ouvertures océaniques péri-africaines. Bull. Sot. Giol. Fr. 162, 811-823. https://doi.org/10.2113/gssgfbull.162.5.811.

      [24] Guiraud R, Binks R.M, Fairhead J.D & Wilson M (1992) Chronology and geodynamic setting of Cretaceous-Cenozoic rifting in West and Central Africa. In Ziegler P.A (Editor), Geodynamics of Rifting, Volume II Case History studies on Rifts: North and South America, Africa-Arabia. Tectonophysics, 713, pp. 227-234. https://doi.org/10.1016/B978-0-444-89912-5.50039-9.

      [25] Guiraud R & Maurin J.C, (1992) Early Cretaceous Rifts of Western and Central Africa: an overview. Tectonophysics 213, 153- 168. https://doi.org/10.1016/0040-1951(92)90256-6.

      [26] Guiraud M (1993) Late Jurassic rifting-Early Cretaceous rifting and Late Cretaceous transpressional inversion in the Upper Benue basin (NE Nigeria). Elf Aquitaine Bull. 17 (2), 371-383.

      [27] Harouna M & Philp R.P (2012) Potential petroleum source rocks in the Termit basin, Niger. Journ. Petrol. Geol. 35 (2), 165-186. https://doi.org/10.1111/j.1747-5457.2012.00524.x.

      [28] Harouna M, Pigott J.D & Philp R.P (2017) Burial history and thermal maturity evolution of the Termit Basin, Niger. Journ. Petrol. Geol. Vol. 40 (3), 277-297. https://doi.org/10.1111/jpg.12676.

      [29] Heasley E.C, Worden R.H, & Hendry J.P (2000) Cement distribution in a carbonate reservoir: recognition of a palaeo oil-water contact and its relationship to reservoir quality in the Humbly Grove field, onshore, UK. Marine and Petroleum Geology v. 17, no. 5, 639-654. https://doi.org/10.1016/S0264-8172(99)00057-4.

      [30] Imam B (1986) Scanning electron microscopy study of the quartz overgrowths within Neogene sandstones of Bengal Basin, Bangladesh. Journal of Geological Society of India 28, 407-413.

      [31] Islam M.A (2009) Diagenesis and reservoir quality of Bhuban sandstones (Neogene), Titas Gas Field, Bengal Basin, Bangladesh. Journal of Asian Earth Sciences 35, 89-100. https://doi.org/10.1016/j.jseaes.2009.01.006.

      [32] Kantorowicz J.D (1985) the origin of authigenic ankerite from the Ninian Field, UK North Sea. Letters to Nature v. 315, 212-216. https://doi.org/10.1038/315214a0.

      [33] Kraishan G.M, Rezaee M.R & Worden R.H (2000) Significance of trace element composition of quartz cement as a key to reveal the origin of silica in sandstones: an example from the Cretaceous of the Barrow sub-basin, Western Australia. In Worden R.H & Morad S (eds.), Quartz cementation in sandstones. International Association of Sedimentologists Special Publications v. 29, pp. 317-332. https://doi.org/10.1002/9781444304237.ch21.

      [34] Lakshtanov L.Z & Stipp S.L.S (2010) Interaction between dissolved silica and calcium carbonate: 1. Spontaneous precipitation of calcium carbonate in the presence of dissolved silica. Geochimica et Cosmochimica Acta, Volume 74, Issue 9, 2655-2664, https://doi.org/10.1016/j.gca.2010.02.009.

      [35] Lanson B, Beaufort D, Berger G, Bauer A, Cassagnabere A, & Meunier A (2002) Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review. Clay Minerals 37, 1-22. https://doi.org/10.1180/0009855023710014.

      [36] Lanson B, Sakharov B.A, Claret F, & Drits V.A (2009) Diagenetic smectite-to-illite transition in clay-rich sediments: A reappraisal of X‑ray diffraction results using the multi-specimen method. American Journal of Science 309, 476-516. https://doi.org/10.2475/06.2009.03.

      [37] Lan C, Yang M, Zhang Y (2015) Impact of sequence stratigraphy, depositional facies and diagenesis on reservoir quality: a case study on the Pennsylvanian Taiyuan sandstones, Northeastern Ordos Basin, China. Marine and Petroleum Geology, https://doi.org/10.1016/j.marpetgeo.2015.09.009.

      [38] Liu B, Pan J, Wan L, Mao F, Liu J, Lu M, Wang Y, Chen Z, & Jiang H (2012b) Polyphase rift evolution of the Termit Basin, eastern Niger: constraints from structural and sedimentary records. Geoscience 26 (2), 319-325.

      [39] Liu B, Wan L.K, Mao F.J, Liu J.G, Lü M.S & Wang Y.H (2015), Hydrocarbon potential of Upper Cretaceous marine source rocks in the Termit Basin, Niger. Journal of Petroleum Geology 38, 157-176. https://doi.org/10.1111/jpg.12604.

      [40] Liu Bang, Guangya Zhang, Fengjun Mao, Jiguo Liu & Mingsheng Liu (2017) Geochemistry and origin of Upper Cretaceous oils from the Termit Basin, Niger. Journ. Petrol. Geol. 40(2), 195-207. https://doi.org/10.1111/jpg.12672.

      [41] Li Yingli, Jingong Cai, Mingshui Song, Junfeng Ji, & Yujin Bao (2016) Influence of organic matter on smectite illitization: A comparison between red and dark mudstones from the Dongying Depression, China. American Mineralogist Vol. 101, 134-145. https://doi.org/10.1111/jpg.12672.

      [42] Louis P (1970) Contribution géophysique à la connaissance géologique du bassin du lac Tchad. Paris, ORSTOM 2 (42), p. 312. https://doi.org/10.1180/000985500546585.

      [43] Marchand A.M.E, Haszeldine R.S, Macaulay C.I, Swennen R & Fallick A.E (2000) Quartz cementation inhibited by crestal oil charge: Miller deep water sandstone, UK North Sea. Clay Mineral, v. 35, no. 1, 201-210.

      [44] Maurin J.C & Guiraud R (1993) Basement control in the development of the Early Cretaceous West and Central African Rift System. Tectonophysics 228, 81-95. https://doi.org/10.1016/0040-1951(93)90215-6.

      [45] McBride E.F (1989) Quartz cement in sandstones: A review. Earth Science Reviews 26, 69-112. https://doi.org/10.1016/0012-8252(89)90019-6.

      [46] Mohammed Bukar (2013) does oil emplacement stop diagenesis and quartz cementation in deeply buried sandstone reservoirs. Thesis, University of Liverpool, pp. 1-270.

      [47] Molenaar N, Cyziene J, Sliaupa S, & Craven J (2008) Lack of inhibiting effect of oil emplacement on quartz cementation: Evidence from Cambrian reservoir sandstones, Paleozoic Baltic Basin. Geological Society of America Bulletin v. 120, no. 9-10, 1280-1295. https://doi.org/10.1130/B25979.1.

      [48] Morad S (1986) Albitization of K-feldspar grains in Proterozoic arkoses and greywackes from southern Sweden. Neues Jahrbuch für Mineralogie Mh, 145-156.

      [49] Morad S (1998) Carbonate cementation in sandstones: distribution patterns and geochemical evolution. In Morad S (Ed.), Carbonate cementation in sandstones. IAS Special Publication 26, pp. 1-27. https://doi.org/10.1002/9781444304893.ch1.

      [50] Morad S, Ketzer J.M & Deros L.F (2000) Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: implications for mass transfer in sedimentary basin. Sedimentology 47, 95-120. https://doi.org/10.1046/j.1365-3091.2000.00007.x.

      [51] Moraes M.A.S & De Ros L.F (1990) Infiltrated clays in fluvial Jurassic sandstones of Recôncavo Basin, northeastern Brazil. Journal of Sedimentary Research v. 60, no. 6, 809-819. https://doi.org/10.1306/212F928C-2B24-11D7-8648000102C1865D.

      [52] Needham S.J, Worden R.H & McIlroy D (2004) Animal-sediment interactions: the effect of ingestion and excretion by worms on mineralogy. Biogeosciences 1, 113-121. https://doi.org/10.5194/bg-1-113-2004.

      [53] Needham S.J, Worden R.H & McIlroy D (2005) Experimental production of clay rims by macrobiotic sediment ingestion and excretion processes. Journal of Sedimentary Research 75, 1028-1037. https://doi.org/10.2110/jsr.2005.078.

      [54] Nguyen N.T.T, Jones S.J, Goulty N.R, Middleton A.J, Grant N, Ferguson A & Bowen L (2013) The role of fluid pressure and diagenetic cements for porosity preservation in Triassic fluvial reservoirs of the Central Graben, North Sea. AAPG Bulletin 97, 1273-1302. https://doi.org/10.1306/01151311163.

      [55] Petters S.W (1978) Stratigraphic evolution of the Benue trough and its implications for the Upper Cretaceous paleogeography of West Africa. Journ. Geol. Vol. 86, 311-322 https://doi.org/10.1086/649693.

      [56] Petters S.W (1981) Stratigraphy of Chad and Iullemmeden basins (West Africa). Ecologae Geologicae Helvetiae vol. 74, 139-159

      [57] Rahman M.J & McCann T (2012) Diagenetic history of the Surma Group sandstones (Miocene) in the Surma Basin, Bangladesh. J. Asian Earth Sci. 45, 65-78. https://doi.org/10.1016/j.jseaes.2011.09.019.

      [58] Robert Ehrlich & Edward L. Etris (1990) Physical relevance of pore types derived from thin section by petrographic image analysis. SCA conference paper number 90001, 1-28.

      [59] Rossi C, Marfil R, Ramseyer K & Permanyer A (2001) Facies-Related Diagenesis and Multiphase Siderite Cementation and Dissolution in the Reservoir Sandstones of the Khatatba Formation, Egypt’s Western Desert. Journal of Sedimentary Research 71, 459-472. https://doi.org/10.1306/2DC40955-0E47-11D7-8643000102C1865D.

      [60] Salman B, Robert H.L & Linda B (2002) Anomalously high porosity and permeability in deeply buried sandstone reservoirs: origin and predictability. AAPG Bull. 86 (2), 301–28. https://doi.org/10.1306/61EEDABC-173E-11D7-8645000102C1865D.

      [61] Sawlowcz Z (1993) Pyrite framboids and their development: a new conceptual mechanism. Geologische Rundschau 82, 148-156. https://doi.org/10.1007/BF00563277.

      [62] Schäfer K, Kraft K.H, Hausler H & Erdman J (1980) In situ stresses and paleostresses in Libya. In Salem N.J & Busrewil M.T (Editors), Geology of Libya, Al-Fateh Univ, Tripoli (1981), pp. 907-922.

      [63] Schmid S, Worden R.H & Fisher Q.J (2004) Diagenesis and reservoir quality of the Sherwood Sandstone (Triassic), Corrib Field, Slyne Basin, west of Ireland. Marine and Petroleum Geology 21, 299-315. https://doi.org/10.1016/j.marpetgeo.2003.11.015.

      [64] Schull T.J (1988) Rift basins of interior Sudan, petroleum exploration and discovery. AAPG Bulletin vol. 72, 1128-1142. https://doi.org/10.1306/703C9965-1707-11D7-8645000102C1865D.

      [65] Wan L, Liu J, Mao F, Lv M, & Liu B (2014) The petroleum geochemistry of the Termit Basin, Eastern Niger. Mar. Pet. Geol. vol. 51, 167-183. https://doi.org/10.1016/j.marpetgeo.2013.11.006.

      [66] Walderhaug O, Lander R.H, Bjorkum P.A, Oelkers E.H, Bjorlykke K & Nadeau P. H (2000) Modelling quartz cementation and porosity in reservoir sandstones: examples from the Norwegain continental shelf. In: Worden R.H & Morad S (eds.), Quartz cementation in sandstones. International Association of Sedimentologists, Special Publications v. 29, pp. 39-50. https://doi.org/10.1002/9781444304237.ch3.

      [67] Walker T.R (1962) Reversible Nature of Chert-Carbonate Replacement in Sedimentary Rocks. Geological Society of America Bulletin vol. 73, issue 2, 237, https://doi.org/10.1130/0016-7606(1962)73[237:RNOCRI]2.0.CO;2.

      [68] Weger Ralf J, Gregor Eberli P, Gregor Baechle T, Jose Massaferro L, & Yue-Feng Sun (2009) Quantification of pore structure and its effect on sonic velocity and permeability in carbonates. AAPG Bulletin v.93, no.10, 1297-1317, https://doi.org/10.1306/05270909001.

      [69] Wei H, Roaldset E, Bjorøy M (1996) Parallel reaction kinetics of smectite to illite conversion. Clay Minerals 31, 365-376. https://doi.org/10.1306/05270909001.

      [70] Wilson M. D & Pittman E.D (1977) Authigenic clays in sandstones: recognition and influence on reservoir properties and paleoenvironmental analysis. Journal of Sedimentary Petrology v. 47, 3-31. https://doi.org/10.1306/212F70E5-2B24-11D7-8648000102C1865D.

      [71] Wilson M.D (1992) Inherited grain-rimming clays in sandstones from eolian and shelf environments: their origin and control on reservoir properties: In Houseknecht D.W & Pittman E.D (eds.), Origin, diagenesis, and petrophysics of clay minerals in sandstones. Society for Sedimentary Geology Special Publication v. 47, pp. 209-225. https://doi.org/10.2110/pec.92.47.0209.

      [72] Worden R.H, Oxtoby N.H, & Smalley P.C (1998) Can oil emplacement prevent quartz cementation in sandstones? Petroleum Geoscience v. 4, no. 2, 129-137. https://doi.org/10.1144/petgeo.4.2.129.

      [73] Worden R.H & Morad S (2000) Quartz cementation in oilfield sandstones: a review of the key controversies. Spec. Publi. Int. Assoc. Sedimentol. 29, 1–20. https://doi.org/10.1002/9781444304237.ch1.

      [74] Worden R.H & Morad S (2003) Clay minerals in sandstones: controls on formation, distribution and evolution. In Worden R.H & Morad S (Eds.), Clay mineral Cements in Sandstones, 34. International Association of Sedimentologists Special Publications, pp. 3-41.

      [75] Yuan G, Gluyas J, Cao Y, Oxtoby N.H, Jia Z, Wang Y, Xi K & Li X (2015) Diagenesis and reservoir quality evolution of the Eocene sandstones in the northern Dongying Sag, Bohai Bay Basin, East China. Marine and Petroleum Geology (2015), https://doi.org/10.1016/j.marpetgeo.2015.01.006.

      [76] Zanguina M, Bruneton A & Gonnard R (1998) An introduction to the petroleum potential of Niger. Journ. Petrol. Geol. 21 (1), 83-103. https://doi.org/10.1111/j.1747-5457.1998.tb00647.x.

      [77] Zhang J.L (2004) Diagenesis of lacustrine deltaic sandstone and its impact on reservoir quality. Acta Sedimentologica Sinica 22(2), 225-233.

      [78] Ziegler P.A (1992) Plate tectonics, plate moving mechanisms and rifting. In Ziegler P. A (Editor), Geodynamics of Rifting, Volume III Thematic Discussions. Tectonophysics 215, pp. 9-34. https://doi.org/10.1016/B978-0-444-89912-5.50044-2.

      [79] Ziegler P.A (1988) Evolution of the Arctic-North Atlantic and the Western Tethys. Am. Assoc. Pet. Geoi. Mem. 43, 198.

  • Downloads

  • How to Cite

    ADA Moussa, H., & Harouna, M. (2019). Diagenesis and reservoir quality evolution of the paleogene sokor1 sandstones in the agadem block, termit basin, eastern Niger. International Journal of Advanced Geosciences, 7(2), 147-172. https://doi.org/10.14419/ijag.v7i2.29562

    Received date: 2019-06-28

    Accepted date: 2019-09-14

    Published date: 2019-10-02