Geochemistry of Garga-Sarali intrusive granitoids (central domain of the central African fold belt in Cameroon): petrological implication

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    The Garga-Sarali granitoids outcrop in form of large slabs and undistorted large blocks, into a schisto-gneissic basement. These rocks contain mainly muscovite and microcline, followed by K-feldspar, quartz, biotite, pyroxene, zircon and oxides, with coarse-grained to fine-grained textures. Geochemical analysis show that it belongs to differentiated rocks group (granodiorite-granite) with high SiO2 (up to 72 wt%) contents. Their genesis was made from a process of partial melting and fractional crystallization. These rocks are classified as belonging to I- and S-Type, meta-peraluminous, shoshonitic granites; belonging to the domain of volcanic arcs. The rare earth elements patterns suggest a source enriched of incompatible elements. The Nb-Ta and Ti negative anomalies from the multi-element patterns are characteristics of the subduction domains.



  • Keywords

    Geochemistry; Petrology; Granitoids; Shoshonitic; Garga Sarali.

  • References

      [1] Njanko E, Nedelec A, Affaton P (2006) Synkinematic high-K calc-alkaline plutons associated with the Pan-African Central Cameroon shear zone (W-Tibati area): petrology and geodynamic significance. J Afr Earth Sci. 44, 494–510.

      [2] Tchameni R., Pouclet A, Penaye J, Ganwa AA, Toteu S F (2006) Petrography and geochemistry of the Ngaound er e pan-african granitoids in central north Cameroon: implications for sources and geological setting. J Afr Earth Sci. 44 : 511–529.

      [3] Ganwa AA, Siebel W, Frisch W, Shang CK, Ekodeck GE (2011) Geochemistry and Geochronology of the Meiganga Metadiorite: Implications on the Timing of D2 Deformational Phase in Adamawa Yade Domain in Cameroon. Int J Biol Chem Sci. 5, 1754–1767.

      [4] Gazel G, Gerard J (1952) Stratigraphie du Précambrien de l’Oubangui Chari Occidental. Bull Soc Geol Fr pp 467–483.

      [5] Bessoles B, Trompette R (1980) Géologie de l’Afrique : la chaine panafricaine : « zone mobile – d’Afrique centrale (partie sud) et zone mobile soudanaise». Mem Bur Geol Min. 92, 397.

      [6] Vairon J, Edimo A, Simeon Y, Valda P (1986) protocole d’accord pour la recherche des minéralisations d’or dans la province aurifère de l’Est (Cameroun) Deuxième et troisième phase. 251pp Orleans-France (BRGM).

      [7] Soba D (1975) Le granite intrusif de Nyibi et son auréole de contact (Cameroun). C R Aca Sci. Fr. 280, 1935–1938.

      [8] Ngako V, Jegouzo P, Nzenti JP (2001) Le Cisaillement Centre Camerounais Rôle structural et géodynamique dans l’orogenèse panafricaine. C R Aca Sci. Fr. 313, 457–463.

      [9] Dumont JF (1986) Identification par télédétection de l’accident de la Sanaga (Cameroun). Sa position dans le contexte des grands accidents d’Afrique Centrale et de la limite nord du craton congolais. Géodynamique 1, 13–19.

      [10] Toteu SF, Bertrand JM, Penaye J, Macaudiere J, Angoua S (1991) Cameroon: a tectonic keystone in the Pan-African network. In: LEWRY, J. F. & STAUFFER, M. R. (Eds.): The Early Proterozoic Trans-Hudson Orogeny of North America. Spec Pap.geol Assoc Canada 37, 483–496.

      [11] Toteu SF, Van Schmus WR, Penaye J, Michard A (2001) New U-Pb and Sm-Nd Data from north-central Cameroon and its bearing on the pre-pan-African history of central Africa. Precam Research 108, 45-73.

      [12] Nguessi Tchamkam C, Vialette Y (1994) Données géochronologiques (Rb-Sr, Pb-Pb, U-Pb) sur le complexe plutonique de Bandja (Centre-Ouest Cameroun). C R Acad Sci Paris.

      [13] Tagne-Kamga G (2003) Petrogenesis of the Neoproterozoic Ngondo plutonic complex (Cameroon, west central Africa): a case of late-collisional ferro-potassic magmatism. J Afr Earth Scs. 36, 149–171.

      [14] Cox KG, Bell JD, Pankhurst RJ (1979) The Interpretation of Igneous Rocks. George, Allen & Unwin, London. 450pp.

      [15] Harker A (1909) The natural history of igneous rocks. Nature, 81, 331–332.

      [16] McDonough W F, Sun SS, (1995) The Composition of the Earth. Chem Geol. 120, 223–253.

      [17] Altherr R, Holl A, Hegner E, Langer C, Kreuzer H (2000) High-Potassium Clac-Alkaline I-Type Plutonism in the European Variscides: Northern Vosges (Franceand Northern Schwarzwald (Germany). Lithos 50, 51–73.

      [18] Nedelec A, Bouchez JL (2011) Pétrologie des granites, structure, cadre géologique. Vuibert Sup STU, 320pp. ISBN : 9782311002867.

      [19] Barbarin B (1999) A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos 46, 605–626.

      [20] Chappell BW, White AJR (1992) I- and S-Type Granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences 83, 1–26.

      [21] Douce AEP, Beard JS (1996) Effects of P, f(O2) and Mg/Fe Ratio on Dehydration Melting of Model Metagreywackes. J Petrol. 37, 999–1024.

      [22] Le Maitre A (1989) Classification of Igneous Rocks and Glossary of Terms. Blackwell Oxford. 193pp.

      [23] Middlemost EAK (1997) Magmas, Rocks, and Planetary Development. Longman Harlow.

      [24] Negue NE, Tchameni R, Vanderhaeges O, Barbey P, Fosso P (2015) Petrography and Geochemistry of the Mbip Granitic Massif, SW Tchollire (Central North Cameroon): Petrogenetic and Geodynamic Implication. Int J Geosc. 6, 761–775.

      [25] Thieblemont D, Tegyey M (1994) Une discrimination géochimique des Roches différenciées témoin de la diversité d’origine et de situation Tectonique des magmas calco-alcalins. C. R. Acad. Sci., 319, 87–94.

      [26] Shand SJ (1943) Eruptives rocks: their genesis,composition, classification, and their relations to ore-deposits. New York pp : 444.

      [27] Singh J, Johannes W (1996) Dehydration Melting of Tonalites. Part I. Beginning of Melting. Contrib Mineral Petrol. 125, 16–25.

      [28] Wilson M (1989) Igneous Petrogenesis. A Global Tectonic Approach. London, Boston, Sydney, Wellington : Unwin Hyman, xx + 466 pp.

      [29] Irving TN, Baragar WRA (1971) A guide to the chemical classification of the common rocks. Can. J. Earth Sci., 8, 523–548.

      [30] Wolf MB, Wyllie JP (1994) Deshydration Melting of Amphibolite at 10 Kbar: The Effects of Temperature and Time. Contrib. Mineral. Petrol., 115, 369–383.

      [31] Naïmou S, Ganwa AA, Klötzli, U, Amadou D, Ekodeck GE (2014) Petrography and Geochemistry of Precambrian Basement Straddling the Cameroon-Chad Border: The Touboro Baïbokoum Area. Int. J. Geosc., 5, 418–431.

      [32] Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998): A Neoproterozoic snowball Earth, Science, 281, 1342–1346.

      [33] Wedeppohl KH (1995) the composition of the continental crust. Geochim. Cosmochim. Act., 59, 1217–1232.

      [34] Rudnick L, McDonough W F, Chappell BW (1993) Carbonatite metasomatism in the northen Tanzania mantle: Pétrographic and geochemical characteristics. Earth planet. Let., 114 (4), 463–475.

      [35] Ballouard C, Branquet Y, Tartèse R, Poujol M, Boulvais P, Vigneresse J-L (2016) Nb-Ta fractionation in peraluminious granites : A marker of the magmatic-hydrothermal transition : Geology, Geol. Soc. Amer., 44 (7), 395pp.




Article ID: 30559
DOI: 10.14419/ijag.v8i1.30559

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.