Geomechanical characterization of mechanical properties and in-situ stresses for predicting wellbore stability of ATG-field, A case study: Niger delta petroleum province, Nigeria

  • Authors

    • Sebastian Abraham Sunu Physics department, Modibbo Adama University of technology, Yola Adamawa State Nigeria
    • Adetola Sunday Oniku Physics department, Modibbo Adama University of technology, Yola Adamawa State Nigeria
    • Osita Chukwudi Meludu Physics department, Modibbo Adama University of technology, Yola Adamawa State Nigeria
    • Chukwuemeka Patrick Abbey American University of Nigeria, Yola, Nigeria
    2020-09-02
    https://doi.org/10.14419/ijag.v8i2.30793
  • ATG-Field, Mechanical Earth Model, Elastic Parameters, Rock Strength, In-Situ Stress.
  • Well logs from ATG- field wells ATG-10 and ATG-11 were calibrated to develop Mechanical Earth Model (MEM) based on elastic parameter, failure parameters, in-situ stresses, pore pressure using well logs to predict wellbore failure. Poisson’s ratio derived from compressional and shear velocities interval transit time and density logs (RHOB), showed that the values ranges from 0.17 to 0.48 and 0.09 to 0.49, and the dynamic Young's Modulus derived from the Compressional and Shear velocity Logs, ranges from 6.0 GPa to 7.8 GPa and 3.6 GPa to 6.6 GPa, the dynamic shear modulus derived from dynamic young’s modulus and Poisson’s ratio which ranges from 3.8 GPa to 5.1 GPa and 2.1 GPa to 5.4 GPa, while the dynamic Bulk modulus ranges from 0.25 GPa to 1.67 GPa and 0.43 GPa to 1.18 GPa for wells ATG-10 and ATG-11 respectively. The calibrated failure parameters or rock strengths derived from compressional velocity logs include: the internal friction angle (Ï•) from Plumb’s correlation, these ranges from 20.869o to 65.5o and 20.869o to 45.61o, Unaxial compressive (UCS) strength ranges from 757.837 psi to 2505.836 psi and 4577.099 psi to 10512.876 psi, cohesion Strength (C) ranges from 205.697 psi to 355.308 psi and 70.652 psi to 390.32 psi and Tensile strength (To) varies from 17.141 psi to 29.609 psi and 5.885 psi to 32.527 psi for well ATG-10 and ATG-11 respectively. The elastic and rock strengths properties vary in a similar trend to the sonic logs as they are derived based on these values. These properties show increasing values with increasing depth, as a result of larger overburden stress, hence lower porosity or high compressional velocity of the formations. However, the elastic properties and formation strength may vary in different formations.

     

     

  • References

    1. [1] Aadnøy, B. S. (2003). Introduction to special issue on wellbore stability. Journal of Petroleum Science and Engineering. 38:79-82. https://doi.org/10.1016/S0920-4105(03)00022-6.

      [2] Aadnoy, B., & Looyeh, R. (2011). Petroleum rock mechanics: drilling operations and well design. Gulf Professional Publishing, Stavanger, Norway: Elseviewer. p376.

      [3] Bell, D. W. (2002). Velocity estimation for pore-pressure prediction: In Huffman A. R. & Bowers, G. L. eds., Pressure regimes in sedimentary basins and their prediction: AAPG Memoir 76, 177 –215. https://doi.org/10.1306/M76870C18.

      [4] Bowers, G.L. (1995). Pore pressure estimation from velocity data: accounting for overpressure mechanisms besides under compaction. SPE Drill. Complet. 10(02), 89–95. https://doi.org/10.2118/27488-PA.

      [5] Bozorgi, E., Javani., D. & Rastegarnia, M. (2016). Development of a mechanical earth model in an Iranian off-shore gas field Islamic Azad University, Science and Research Campus, Tehran, Iran Imam Khomeini International University, Ghazvin, Iran School of Mining, Petroleum & Geophysics Engineering, Shahrood University of Technology, Shahrood.37-46. Iran Journal of Mining & Environment, 7(1), 2016. DOI: 10.22044/jme.2016.457.

      [6] Cheng, X., Tan, C.P., & Detournay, C. (2003). A Study on Wellbore Stability in Fractured rock masses with impact of mud infiltration. Journal of Petroleum Science and Engineering, 38(3/4) 145-154. https://doi.org/10.1016/S0920-4105(03)00028-7.

      [7] Corredor, A., Lessenger, M.A., &. Capentino, P. (2005). Comparative source rock evaluation of opuama channel complex and adjacent producing areas of Niger Delta, Am. Assoc. Pet. Geol. Bull. 2(6), 10–27.

      [8] Denney, D. (2011). 3D geomechanical modeling of optimizes drilling in the Llanos orientales basin Columbia. Journal of Petroleum technology, 63 (9) 86-88 https://doi.org/10.2118/0911-0086-JPT.

      [9] Doust, H, & Omatsola, E. (1990). Divergent/passive Margin Basins. AAPG Memoir 48, 239-248.

      [10] Doust, H. Omatsola E., (1990). Niger Delta. In Edwards, J.D. Santogrossi P.A. (1990). Divergent/passive Margin Basins, (Eds.). AAPG Memoir 48, American Association of Petroleum Geologists, Tulsa. 239–248.

      [11] Frankl, E.J. & Cordry, E.A. (1967). The Niger Delta oil province-recent developments onshore and
      offshore. Seventh World Petroleum Congress, Proceedings, Mexico City, Mexico, 1B, 195-209.

      [12] Islam, M. A., Skalle, P., Al-Ajmi, A. M. & Soreide, O. K. (2010). Stability analysis in shale through deviated boreholes using the Mohr and Mogi-Coulomb failure criteria: ARMA. 10-432.

      [13] Iqbal, O., Ahmad, M., & Abd Kadir, A., P. A, (2017). Geomechanical Characterization of Potential Roseneath Shale Gas, Cooper Basin, Australia. Asian Research Publishing Network (ARPN, Journal of Engineering and Applied Sciences. 12(17),1-11.

      [14] Jaeger, J. C., Cook, N. G, & Zimmerman, R. W. (2007). Fundamentals of rock mechanics. U.S.A: Blackwell Publishing.

      [15] Kaplan, A., Lusser, C.U, Norton, I.O. (1994). Tectonic map of the world, panel 10: Tulsa. Am. Ass Petro Geol, scale.

      [16] Kidambi, T & Kumar, G.S. (2016). Mechanical Earth Modeling for a vertical well drilled in a naturally fractured tight carbonate gas reservoir in the Persian Gulf. Journal of Petroleum Science Eng. 141:38–51. https://doi.org/10.1016/j.petrol.2016.01.003.

      [17] Klett, T.R., Ahlbrandt, T.S., Schmoker, J.W., & Dolton, J.L. (1997). Ranking of the world’s oil and gas provinces by known petroleum volumes. US Geological Survey Open-file Report-97-463, CD-ROM. https://doi.org/10.3133/ofr97463.

      [18] Kulke, H., (1995). Nigeria. In, Kulke, H., ed., Regional Petroleum Geology of the World. Part II: Africa, America, Australia and Antarctica: Berlin, Gebrüder Borntraeger, p. 143-172.

      [19] Lambert-Aikhionbare, D.O. & Ibe, A.C. (1984). Petroleum source-bed evaluation of the Tertiary Niger Delta: Discussion. AAPG Bulletin, 68: 387-394. https://doi.org/10.1306/AD460A2B-16F7-11D7-8645000102C1865D.

      [20] Lehner, P., De Ruiter, P.A.C. (1977). Structural history of Atlantic margin of Africa. American association of petroleum Geologists bulletin, 61, pp 961-981 https://doi.org/10.1306/C1EA43B0-16C9-11D7-8645000102C1865D.

      [21] Lianyang Zhang, & Radha., P. C. (2010). Evaluation of rock strength criteria for wellbore stability analysis." International Journal of Rock Mechanics and Mining Sciences 47(8), 1304-1316. https://doi.org/10.1016/j.ijrmms.2010.09.001.

      [22] Luo, G., Nikolinakou, M. A., Flemings, P. B., & Hudec, M. R. (2012). Geomechanical modeling of stresses adjacent to salt bodies: Part 1—Uncoupled models. AAPG Bulletin, 96(1), 43-64. https://doi.org/10.1306/04111110144.

      [23] Moos, D., Peska, P., Finkbeiner, T., & Zoback, M.D., (2003). Comprehensive wellbore stability analysis utilizing quantitative risk assessment. In Chang, C., Mark D. Zoback, M.D., & Khaksar, A (2006). Empirical relations between rock strength and physical properties in sedimentary rocks Department of Geophysics, Stanford University, Palo Alto, CA 94305-2215, USA GeoMechanics International, Inc., Perth, WA 6000, Australia.

      [24] Plumb, R.A., (1994). Influence of composition and texture on the failure properties of clastic rocks. Eurock 94, Rock Mechanics in Petroleum Engineering conference, Delft, Netherlands, pp 13–20. https://doi.org/10.2118/28022-MS.

      [25] Plumb, R., Edwards, S., Pidcock, G., Lee, D., & Stacey, B. (2000). The mechanical earth model concept and its application to high-risk well construction projects. In IADC/SPE Drilling Conference. Society of Petroleum Engineers. https://doi.org/10.2118/59128-MS.

      [26] Short, K.C., & Staublee, A.J. (1965). Outline of Geology of Niger Delta. Am. Ass. Petrol Geol Bull. 51, 761-779.

      [27] The Leading Eadge (May 2007). Geomechanics. Society of exploration geophysics (SEG) ISSN1070-485, (5), 6.

      [28] Tuttle, M.L.W., Charpentier, R.R., & Brownfield, M.E. (1999). The Niger Delta petroleum system: Niger Delta Province, Nigeria, Cameroon, and Equatorial Guinea, Africa. USGS, Open-File Report 99-50-H. https://doi.org/10.3133/ofr9950H.

      [29] Wang, Z. (2000). Dynamic versus static elastic properties of reservoir rocks. Seismic and Acoustic Velocities in Reservoir Rocks, SEG Geophysics Reprint Series, 19.

      [30] Weber, K.J., & Daukoru, E.M. (1975). Petroleum geology of the Niger Delta. Proceedings of the Ninth World Petroleum Congress, volume 2, Geology: London, Applied Science Publishers, Ltd., 209-221.

      [31] Zoback, M.D., Barton, C.A., Brudy, M., Castillo, D.A., Finkbeiner, T., Grollimund, B.R., Moos, D.B., Peska, P., Ward, C.D., Wiprut, D.J. (2003). Determination of stress orientation and magnitude in deep wells. Int. J. Rock Mech. Min. Sci. 40:1049–1076. https://doi.org/10.1016/j.ijrmms.2003.07.001.

  • Downloads

  • How to Cite

    Abraham Sunu, S., Sunday Oniku, A., Chukwudi Meludu, O., & Patrick Abbey, C. (2020). Geomechanical characterization of mechanical properties and in-situ stresses for predicting wellbore stability of ATG-field, A case study: Niger delta petroleum province, Nigeria. International Journal of Advanced Geosciences, 8(2), 126-136. https://doi.org/10.14419/ijag.v8i2.30793