Alkaline rocks of the northern part of Birnin Gwari schist belts, northwestern Nigeria: provenance and evolution

  • Authors

    • Kehinde O. Oluyede ''Ahmadu Bello University, Zaria''
    2021-10-16
    https://doi.org/10.14419/ijag.v9i2.31253
  • Birnin Gwari, Banded Gneiss, Sedimentary, Protolith, Volcanic Arc, Granite.
  • Rocks of the northern part of Birnin Gwari schist belt is underlain predominantly by (i) banded gneiss of dioritic and granodioritic composition and granitic gneisses; (ii) biotite-staurolite quartz schist; and (iii) syn-tectonic biotite hornblende (quartzolite - BHG) granite, biotite granite (BG), and biotite-muscovite granite (BMG). Banded gneiss rocks are of hybrid sedimentary–igneous protoliths; their pelitic and mafic protoliths were derived essentially from a quartz-diorite, granodiorite and granite-quartz monzonite source. Metasediments are enriched in SiO2 (63.03 to 65.13 wt %), with moderately elevated Al2O3 (15.4 – 15.16 wt %) values and depleted in Ba, V, W, La, Nb, Nd, Rb, Th and Zr trace elements; inherited from shale-greywacke sedimentary protoliths. Cogenetic syn-tectonic granites display similar trace elements and REE patterns, with diverse trends such as “normalâ€, “anomalous†and “strongly differentiated†and characterized by LILE enrichment, high LREE fractionation factor (La/Yb of 6.74 to 45.14) with weak to moderate negative Eu (Eu/Eu* = 0.38 to 0.62) and strong negative Nb, P and Ti anomalies. The belt consists of rocks with alkaline affinity and evolved as back arc behind subducted Pan-African plate due effect of compressional forces and differentiation of quartz diorite, granodioritic and granite-quartz monzonite magma and partial melting of crustal components inherited from shale-greywacke sedimentary protoliths in volcanic arc and post collisional settings. The precursor of these rocks originated from basalt of depleted mantle that differentiated progressively to the granite.

     

     


     
  • References

    1. [1] Ajibade, A. C., Fitches, W. R. and Wright J. B. 1979. The Zungeru mylonites, Nigeria: recognition of a major tectonic unit. Revue De Geologie et Geographie Physique, 21, 359-363.

      [2] Ajibade, A. C. (1980): Geotectonic evolution of Zungeru Region, Nigeria. Unpublished PhD Thesis, University of Wales Aberyswyth, 421.

      [3] Ajibade A. C., Anyanwu, N. P. C., Okoro, A. U. and Nwajide, C. S. (2008). The Geology of Minna area. Nigeria Geological Survey Agency Bulletin No 43.

      [4] Adegbuyi, O.1., Ogunyele, A.C., Odindu, M., and Erinfolami, T. (2017). Geochemical Characteristics and Petrogenesis of Basement Rocks in Idoani Area, Ondo State, Southwestern Nigeria. International Journal of Advanced Geosciences, 5 (2), 102-108 https://doi.org/10.14419/ijag.v5i2.8377.

      [5] Altherr, A. Holl, E. Hegner, C. Langer and Kreuzer, H. 2000. High potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany), Lithos 50, 51–73. https://doi.org/10.1016/S0024-4937(99)00052-3.

      [6] Boynton W.V. 1984. Cosmochemistry of the rare earth elements; meteorite studies. In: Henderson P. (Ed.). Rare Earth element geochemistry. Amsterdam: Elsevier. 63-114. https://doi.org/10.1016/B978-0-444-42148-7.50008-3.

      [7] Condie, K. C. (1967): Geochemistry of early Precambrian grey-wackes from Wyoming. Geochim.Comochim.Acta, Vol. 31, 2135-2149. https://doi.org/10.1016/0016-7037(67)90057-9.

      [8] Ferre, E. C., Caby, R., Peucat, J. J., Capdevila, I. R., and Monie, P., 1998. Pan-African post-collisional, ferro-potassic granite and quartz-monzonite plutons of Eastern Nigeria. Lithos, 45, 255 278. https://doi.org/10.1016/S0024-4937(98)00035-8.

      [9] Frost, B. R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J., & Frost, C. D. (2001). A geochemical classification for granitic rocks. Journal of Petrology, 42, 2033-2048. https://doi.org/10.1093/petrology/42.11.2033.

      [10] Garrels, R. M. & Mackenzie, F. T. (1971). Evolution of sedimentary rocks. W.W. Norton and Company, Incorporated. New York, 394.

      [11] Garba, I. 2003. The Nigerian gold deposits: geological settings, geochemical characteristics and origin. African Geosciences Review 10, (1-2), 109-119.

      [12] Gardien, V., Thompson, A. B., Grujic, D. and Ulmer, P. 1995. Experimental melting of biotite + plagioclase + quartz ± muscovite assemblage and implications for crustal melting, Journal of Geophysical Research 100 (1995), 15581–15591. https://doi.org/10.1029/95JB00916.

      [13] Grant, N. K. 1978. Structural distinction between metasedimentary cover and an underlying basement in the 600 m.y. old Pan-African domain of Northwestern Nigeria, West African. Geological Society America Bulletin 89, 50-58. https://doi.org/10.1130/0016-7606(1978)89<50:SDBAMC>2.0.CO;2.

      [14] Irvine, T. N., and Baragar, W. R. A. 1971. A Guide to the Chemical Classification of Common Volcanic Rocks. Canadian Journal of Earth Sciences, 8, (5), 523-548. https://doi.org/10.1139/e71-055.

      [15] Machado, A. Lima, E. F. Chemale, F. J. 2005. Geochemistry Constraints of Mesozoic-Cenozoic Calc-Alkaline Magmatism in the South Shetland Arc, Antarctica. Journal of South American Earth Sciences. Vol. 18, No. 3-4, 407-425. https://doi.org/10.1016/j.jsames.2004.11.011.

      [16] Miyashiro A (1978). Nature of alkalic volcanic rock series. Contributions to Mineralogy and Petrology 66: 91–104. https://doi.org/10.1007/BF00376089.

      [17] Mucke, 2005. The Nigerian manganese-rich iron-formations and their host rocks - from sedimentation to metamorphism. Journal of African Earth Sciences. 41, 407 – 436. https://doi.org/10.1016/j.jafrearsci.2005.07.003.

      [18] Oluyede, K., Garba, I., Danbatta, U., Ogunleye, P. and Klötzli, U. (2021a). Field occurrence, petrography and structural characteristics of basement rocks of the northern part of Kushaka and Birnin Gwari schist belts, northwestern Nigeria. Journal of Natural Science Research. https://doi.org/10.7176/JNSR.

      [19] Oluyede, K., Garba, I., Danbatta, U., Ogunleye, P. and Klötzli, U. (2021b). Geochemistry and petrogenesis of banded and granitic gneisses of the northern part of Kushaka schist belts northwestern Nigeria. Journal of Environmental and Earth Science. https://doi.org/10.7176/JEES.

      [20] Oluyede, K., Garba, I., Danbatta, U., Ogunleye, P. and Klötzli, U. (2021c). Geochemistry and petrogenetic features of metasediments in central and northern part of Kushaka and Birnin Gwari schist belts NW Nigeria. https://doi.org/10.7176/JEES.

      [21] Oluyede, K. and Klötzli, U. (2020a). Syn-collisional Pan-African granite in the northern part the Birnin Gwari Schist Belt, NW Nigeria. International Journal of Advanced Geosciences Vol. 8 No. 2. pp 197-213. https://doi.org/10.14419/ijag.v8i2.31095.

      [22] Oluyede, O. K. and Klötzli, U. (2020b). Syn-collisional and late orogenic Pan-African granite in the northern part the Kushaka Schist Belt, NW Nigeria. Journal of Open Geology (Paper ID: 1211425) https://doi.org/10.14419/ijag.v8i2.31095.

      [23] Oluyede, O. K. (2020). Rocks of the northern part of Kushaka schist belts, Northwestern Nigeria: Provenance and Evolution. Open Journal of Geology (Paper ID 1211429).

      [24] Oyinloye, A. O. (2011). Geology and Geotectonic Setting of the Basement Complex Rocks in South Western Nigeria: Implications on Provenance and Evolution, Earth and Environmental Sciences, Dr. Imran Ahmad Dar (Ed.), ISBN: 978-953-307-468-9, InTech, Available from: http://www.intechopen.com/books/earthand-environmental-sciences/geology-and-geotectonic-setting-of-the-basement-complex-rocks-in-southwestern-nigeria-implications.

      [25] Pearce, J. A. Harris, N. B. W. and Tindle, A. G. W. 1984. Trace Element Discrimination Diagrams for the Tectonic Ä°nterpretation of Granitic Rocks. Journal of Petrology, 25, (4), 956-983. https://doi.org/10.1093/petrology/25.4.956.

      [26] Pearce, .M., Gorman , B. E. & Birkett ,T. C. (1975): The Relationship between Major Element Chemistry and Tectonic Environment of basic and intermediate Volcanic Rocks. Earth Science Planetary Letters, 36, 121–132. https://doi.org/10.1016/0012-821X(77)90193-5.

      [27] Partino Douce and Beard, 1995 A.E. Partino Douce and J.S. Beard, Dehydratation–melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar, Journal of Petrology 36, 707–738. https://doi.org/10.1093/petrology/36.3.707.

      [28] Partino Douce and Beard, 1996 A.E. Partino Douce and J.S. Beard, Effects of P, f (O2) and Mg/Fe ratio on dehydratation melting of model metagreywackes, Journal of Petrology 37, 999–1024. https://doi.org/10.1093/petrology/37.5.999.

      [29] Rickwood, P. C. (1989): Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos, 22, 247-263. https://doi.org/10.1016/0024-4937(89)90028-5. Soesoo, A. 2000. Fractional Crystallization ofmantle-derived melts as a mechanism for some I-type granite petrogenesis: an example from Lachlan Fold Belt, Australia. Journal of Geological Society, London 157, 135-149. https://doi.org/10.1016/0024-4937(89)90028-5.

      [30] Singh, J. and Johanneses, W. 1996. Dehydration melting of tonalites: Part II. Composition of melts and solids, Contributions to Mineralogy and Petrology 125, 26–44. Sun S. S. and McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A.D., Norry M.J. (Eds.). Magmatism in the ocean basins. Geological Society of London, Special Publication, 42:313-345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.

      [31] Turner, D. C. 1983: Upper Proterozoic schist belts in the Nigerian sector of the Pan African Province of West Africa. Precambrian Research 21, 5-79. https://doi.org/10.1016/0301-9268(83)90005-0.

      [32] Truswell, J. F. and Cope, R. N. 1963. The geology of parts of Niger and Zaria Provinces, Northern Nigeria. Bulletin Geological Survey Nigerian 29, 38.

      [33] Usman, M. A. and Ibrahim, A. A. 2017. Petrography and Geochemistry of Rocks of Northern Part of Wonaka Schist Belt, Northwestern Nigeria. Nigerian Journal of Basic and Applied Science (December 2017), 25(2): 87-99. https://doi.org/10.4314/njbas.v25i2.10.

      [34] Whalen J. B., Currie K. L. and Chappell B. W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions Mineralogy and Petrology 95: 407-419. https://doi.org/10.1007/BF00402202.

      [35] Wolf, M.B. and Wyllie, J.P. 1994. Dehydration–melting of amphibolite at 10 kbars: the effects of temperature and time, Contributions to Mineralogy and Petrology 115, 369–383. https://doi.org/10.1007/BF00320972.

  • Downloads

  • How to Cite

    O. Oluyede, K. (2021). Alkaline rocks of the northern part of Birnin Gwari schist belts, northwestern Nigeria: provenance and evolution. International Journal of Advanced Geosciences, 9(2), 65-75. https://doi.org/10.14419/ijag.v9i2.31253