On the occurrence of Bérem dolerites dyke swarms (north east adamawa plateau, Cameroon)

 
 
 
  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract


    Petrography and geochemical outline studied carried out on Bérem dolerites have shown that they crosscut the local granitoıds of the basement toward N100-120, EW and N160E directions. Individual dyke may have 5 m to 50 m wide and extend along strike on 200 m to 3 km. Microscopic observations have distinguished the lavas of doleritic textures of ophitic to sub ophitic types. ICP-AES and ICP-MS geochemical analyses of representative samples have distinguished the lavas of basaltic trachyandesite of normative quartz-hypersthene compositions. All lavas belong to the same lavas series of continental tholeiites affinity which have undergone the fluids circulation and crustal contamination processes. Mantle of Bérem dolerites should be E-MORB mantle component which have experienced the relatively high partial melting rate. Bérem dolerites should be considered as imprints of late Pan African relaxation phase which cracks should have been filled by dolerite lavas.


  • Keywords


    Geochemistry; Continental Tholeiites; E-MORB; Bérem; Cameroon.

  • References


      [1] Abdelsalam MG, Liégeois JP & Stern RJ (2002) The Saharan Metacraton. Journal of African Earth Sciences 34, 119-136. PII: S08 9 9- 5 3 62 (02) 0 00 1 3- 1 https://doi.org/10.1016/S0899-5362(02)00013-1.

      [2] Bryan SE & Ernst RE (2008) Revised definition of Large Igneous Provinces (LIPs). Earth-Science Reviews 86, 175–202. https://doi.org/10.1016/j.earscirev.2007.08.008.

      [3] Cabanis B & Lecolle M (1988) Le diagramme La/10—Y/15—Nb/8 : un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de mélange et/ou de contamination crustale. Les comptes rendus de l’académie des sciences de Paris, 309 (2), 2023–2029. .

      [4] Cabanis B & Thiéblemont D (1988) La discrimination des tholéiites continentales et des basaltes arrière-arc. Proposition d’un nouveau diagramme Th–Tbx3–Tax2. Bulletin de la Société géologique de France 8 6 (4), 927–935. https://doi.org/10.2113/gssgfbull.IV.6.927.

      [5] Castaing C, Feybesse JL, Thieblemont D, Triboulet C & Chevremont P (1994) Paleogeographical reconstructions of the Pan-African/Brasiliano orogen: closure of an oceanic domain or intracontinental convergence between major blocks? Precambrian Research 69, 327-344. SSD10301-9268 (94) 00030-U. https://doi.org/10.1016/0301-9268(94)90095-7.

      [6] Coulon C, Vidal P, Dupuy C, Baudin P, Popoff M, Maluski H & Hermitte D (1996) The Mesozoic to Early Cenozoic magmatism of the Benue rough (Nigeria); geochemical evidence for the involvement of the St Helena plume. Journal of Petrology 37 (6), 1341–1358. http://petrology.oxfordjournals.org/. https://doi.org/10.1093/petrology/37.6.1341.

      [7] Dupuy C & Dostal J (1984) Trace element geochemistry of some continental tholeiites. Earth and Planetary Science Letters 67(1), 61-69. https://doi.org/10.1016/0012-821X(84)90038-4.

      [8] Ferré EC, Déléris J, Bouchez JL, Lar AU & Peucat JJ (1996) The Pan-African reactivation of Eburnean and Archean provinces in Nigeria: structural and isotopic data. Journal of Geological Society of London 153, 719-728. https://doi.org/10.1144/gsjgs.153.5.0719.

      [9] Ganwa AA, Frisch W, Siebel W, Ekodeck GE, Shang CK, Ondoa JM, Satir M & Numbem JT (2008) “Zircon 207Pb/206Pb Evaporation Ages of Panafrican Meta- sedimentary Rocks in the Kombé-II Area (Bafia Group, Cameroon): Constraints on Protolith Age and Provenance”. Journal of African Earth Sciences, Vol. 51, No. 2 pp. 77-88. https://doi.org/10.1016/j.jafrearsci.2007.12.003.

      [10] Guiraud R, Bosworth W, Thierry J & Delplanque A (2005) Phanerozoic geological evolution of Northern and Central Africa: An overview. Journal of African Earth Science 43, 83–143. https://doi.org/10.1016/j.jafrearsci.2005.07.017.

      [11] Le Maître RW (2002) Igneous rocks. A classification and glossary ofterms. Recommendations of the International Union of Geological Sciences Subcommission on the systematics of IgneousRocks, Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511535581.

      [12] Liégeois JP, Abdelsalam MG, Ennih N & Ouabadi A (2013) Metacraton: Nature, genesis and behavior. Gondwana Research 23, 220-237. https://doi.org/10.1016/j.gr.2012.02.016.

      [13] Miyashiro A (1974) Volcanic rock series in Island area and active continental margin. American Journal of Sciences 274, 321–355. https://doi.org/10.1016/j.gr.2012.02.016.

      [14] Moreau C, Regnoult JM, Déruelle B & Robineau B (1987) A new tectonic model for the Cameroon Line, central Africa. Tectonophysics 139, 317-334. https://doi.org/10.1016/0040-1951(87)90206-X.

      [15] Ngako V, Affaton P & Njonfang E (2008) Pan-African tectonics in northwestern Cameroon: implication for the history of western Gondwana. Gondwana Research 14, 509-522. https://doi.org/10.1016/j.gr.2008.02.002.

      [16] Ngounouno I, Deruelle B, Guiraud R & Vicat JP (2001) Magmatismes tholéiitique et alcalin des demi-grabens crétacés de Mayo Oulo-Léré et de Babouri-Figuil (Nord du Cameroun-Sud du Tchad) en domaine d’extension continentale. Comptes Rendu Académie Des Sciences Paris, Sciences de la Terre et des planètes / Earth and Planetary Sciences 333, 201-207. https://doi.org/10.1016/S1251-8050(01)01626-3.

      [17] Oliveira EP, Toteu SF, Araújo MNC, Carvalho MJ, Nascimento RS, Bueno JF, McNaughton N & Basilici G (2006) Geologic correlation between the Neoproterozoic Sergipano belt (NE Brazil) and the Yaoundé belt (Cameroon, Africa). Journal of African Earth Sciences 44, 470-478. https://doi.org/10.1016/j.jog.2004.10.003.

      [18] Poudjom Djomani YH, Nnange JM, Diament M, Ebinger CJ & Fairhead JD (1995) Effective elastic thickness and crustal thickness variations in westcentral Africa inferred from gravity data. Journal of Geophysic Research 100, 22047–22070. https://doi.org/10.1029/95JB01149.

      [19] Rudnick RL & Funtain DM (1995) Nature and composition of the continantal crust: a lower crustal perspective. Reviews of geophysics 33 (3), 267-309. https://doi.org/10.1029/95RG01302.

      [20] Srivastava RK (2011) Dyke Swarms: Keys for Geodynamic Interpretation. Springer-Verlag: Berlin. https://doi.org/10.1007/978-3-642-12496-9.

      [21] Tchakounté J, Eglinger A, Toteu SF, Zeh A, Nkoumbou C, Mvondo-Ondoa J, Penaye J, De Wit M & Barbey P (2017) The Adamawa-Yadé domain, a piece of Archaean crust in the Neoproterozoic Central African Orogenic Belt (Bafia area, Cameroon). Precambrian Research 299, 210-229. https://doi.org/10.1016/j.precamres.2017.07.001.

      [22] Tchameni R, Pouclet A, Penaye J, Ganwa AA & Toteu SF (2006) Petrography and geochemistry of the Ngaoundéré Pan-African granitoids in central north Cameroon: implications for their sources and geological setting. Journal of African Earth Sciences 44, 511–529. https://doi.org/10.1016/j.jafrearsci.2005.11.017.

      [23] Tchouankoue JP, Simeni Wambo NA, Dongmo AK & Xian-Hua Li (2014) 40Ar/39Ar dating of Basaltic dykes swarm in western Cameroon: Evidence of late Paléozoic and Mesozoic magmatism in the corridor of the Cameroon line. Journal of African Earth Sciences 93, 14-22. https://doi.org/10.1016/j.jafrearsci.2014.01.006.

      [24] Toteu SF, Van Schmus WR, Penaye J & Michard A (2001) New U-Pb and Sm-Nd data from north-central Cameroon and its bearing on pre-Pan-African history of central Africa. Precambrian Research 108, 45-73. https://doi.org/10.1016/S0301-9268(00)00149-2.

      [25] Toteu SF, Penaye J & Poudjom Djomani Y (2004) Geodynamic evolution of the pan-African belt in central Africa with special reference to Cameroon. Canadian Journal of Earth Sciences 41, 73–85. https://doi.org/10.1139/e03-079.

      [26] Vicat J-P, Ngounouno I & Pouclet A (2001) Existence of old dolerites dykes of continental tholeiites composition in the alkaline province of the Cameroon Line. Implication to the geodynamic context. Compte Rendu de l’Académie des Sciences Paris, Sciences de la Terre et des planètes / Earth and Planetary Sciences 332, 243-249. S1251-8050(01)01526-9/FLA. https://doi.org/10.1016/S1251-8050(01)01526-9.

      [27] Wood DA (1980) The application of the Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lava of the British Tertiary volcanic province. Earth and Planetary Science Letters 50, 11–30. 0012-821X/80/0000-0000. https://doi.org/10.1016/0012-821X(80)90116-8.


 

View

Download

Article ID: 31937
 
DOI: 10.14419/ijag.v10i1.31937




Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.