The Petrography and geochemistry of iron-bearing units from Mingo’o area (Ntem complex, southern Cameroon)

  • Authors

    • Rodrigue Edjo-Minko School of Geology and Mining Engineering, University of Ngaoundere,
    • GBAMBIE Isaac Bertrand Mbowou UNIVERSITY OF NGAOUNDERE, Cameroon
    • Isaac Daama University of Ngaoundere
    • Dagwai Nguihdama University of Maroua
    • Mike-Franck Mienlam Essi University of Ebolowa
    2024-04-05
    https://doi.org/10.14419/00a8vb15
  • Banded Iron Formations; Congo Craton; Hydrothermal Fluids; Seawater
  • Abstract

    The banded iron formation (BIF) of the Mingo’o region is located on the northern edge of the Congo Craton. They constitute a significant component of the southern Cameroonian Archean to Paleoproterozoic. Petrographic description indicates that the most characteristic facies of the Mingo'o BIFs are quartz-magnetite BIFs (QMB), which are mostly composed of magnetite and quartz. Geochemistry analyses show that the major elements of this BIF are very simple, with SiO2 and Fe2O3 representing 95.25 wt. % of the bulk rock on average. The low concentrations of Al2O3, TiO2, and HFSE reveal that these chemical sediments are detritus-free. According to Paerson's major element correlation matrix, there is a slight contribution of detrital material to chemical sediment, as confirmed by the strong positive correlation (r = 0.72) of Al and Ti, also by the binary diagrams Al vs. Σ(Y + Nb + Zr) with a weak positive correlation (r2 = 0.31) and Al vs. ΣREE with a zero correlation (r2 = 0.08), indicating that the detrital input was insignificant. The transition metals Zn, Cr, Sr, and V are among the trace elements with low enrichments. This suggests the direction of the volcanogenic hydrothermal input in chemical precipitates. The mean ∑REE concentration of the studied BIF is 26.74 ppm, with a range of 8.82 to 36.74 ppm. Pure chemical sediments are comparable to that. The shale-normalized patterns display minor positive europium anomalies, a sharp decrease in heavy REE, and enrichment in light REE. These geochemical characteristics suggest that the hydrothermal activity in the deep ocean, coupled with seawater, was the source of the Fe and Si. Low-temperature hydrothermal solutions play a key role in the studied BIF, as shown by the absence of a notable positive Eu anomaly. Ce anomalies are seen in the chrondrite-normalized REE patterns, which are characterized by LREE-enriched (mean LaCN/YbCN = 5.28) and HREE depletion (mean TbCN/YbCN = 1.04) patterns. This may indicate that the BIF within the Mingo’o region was formed in place of the basin towards redoxcline, alternating at different times and under various influences from the influx of seawater that has been oxidized.

    Author Biography

    • Rodrigue Edjo-Minko, School of Geology and Mining Engineering, University of Ngaoundere,

      Department of Mines qnd Geology,

  • References

    1. M.M. Kimberley, Exhalative origins of iron formations, Ore Geology Reviews 5 (1989) 13–145. https://doi.org/10.1016/0169-1368(89)90003-6.
    2. M.M. Kimberley, Paleoenvironmental classification of iron formations, Economic Geology 73 (1978) 215–229. https://doi.org/10.2113/gsecongeo.73.2.215.
    3. A. Bekker, B. Krapez, J.F. Slack, N. Planavsky, A. Hofmann, K.O. Konhauser, O.J. Rouxel, Iron Formation: the Sedimentary Product of a Complex Interplay among Mantle, Tectonic, Oceanic, and Biospheric processes--a reply, Economic Geology 107 (2012) 379–380. https://doi.org/10.2113/econgeo.107.2.379.
    4. G.A. Gross, A classification of iron formations based on depositional environments, The Canadian Mineralogist 18 (1980) 215–222.
    5. P. Cloud, Paleoecological Significance of the Banded Iron-Formation, Economic Geology 68 (1973) 1135–1143. https://doi.org/10.2113/gsecongeo.68.7.1135.
    6. M. Zhai, T.-S. Li, P. Peng, B. Hu, F. Liu, Y. Zhang, Precambrian key tectonic events and evolution of the North China craton., Geologi-cal Society, London, Specail Publication 338 (2010) 235–262. https://doi.org/10.1144/SP338.12.
    7. L. Zhang, M. Zhai, X. Zhang, P. Xiang, Y. Dai, C. Wang, F. Pirajno, Formation age and tectonic setting of the Shirengou Neoarchean banded iron deposit in eastern Hebei Province: Constraints from geochemistry and SIMS zircon U–Pb dating, Precambrian Research 222–223 (2012) 325–338. https://doi.org/10.1016/j.precamres.2011.09.007.
    8. E.R. Ramanaidou, M.A. Wells, Sedimentary Hosted Iron Ores, in: Treatise on Geochemistry, Elsevier, 2014: pp. 313–355. https://doi.org/10.1016/B978-0-08-095975-7.01115-3.
    9. N.J. Beukes, J. Gutzmer, Origin and Paleoenvironmental Significance of Major Iron Formations at the Archean-Paleoproterozoic Boundary, in: Banded Iron Formation-Related High-Grade Iron Ore, Society of Economic Geologists 15 (2008) 5–47. https://doi.org/10.5382/Rev.15.01.
    10. M. Flis, Advances in Geophysics Applied to the Search for Banded Iron Formation-Related, High-Grade Hematite Iron Ore, in: S. Hagemann, C.A. Rosière, J. Gutzmer, N.J. Beukes (Eds.), Banded Iron Formation-Related High-Grade Iron Ore, Society of Economic Geologists 15 (2008), p. 0. https://doi.org/10.5382/Rev.15.15.
    11. S.G. Hagemann, T. Angerer, P. Duuring, C.A. Rosière, R.C. Figueiredo e Silva, L. Lobato, A.S. Hensler, D.H.G. Walde, BIF-hosted iron mineral system: A review, Ore Geology Reviews 76 (2016) 317–359. https://doi.org/10.1016/j.oregeorev.2015.11.004.
    12. A.T. Melo, J. Sun, Y. Li, Geophysical inversions applied to 3D geology characterization of an iron oxide copper-gold deposit in Brazil, Geophysics 82 (2017) K1–K13. https://doi.org/10.1190/geo2016-0490.1.
    13. S. Ganno, D. Tsozué, G.D. Kouankap Nono, M.S. Tchouatcha, T. Ngnotué, R. Gamgne Takam, J.P. Nzenti, Geochemical Constraints on the Origin of Banded Iron Formation-Hosted Iron Ore from the Archaean Ntem Complex (Congo Craton) in the Meyomessi Area, Southern Cameroon: Geochemistry of the Meyomessi BIF, Resource Geology 68 (2018) 287–302. https://doi.org/10.1111/rge.12172.
    14. S. Ganno, C. Moudioh, A. Nzina Nchare, G.D. Kouankap Nono, J.P. Nzenti, Geochemical fingerprint and iron ore potential of the sili-ceous itabirite from Palaeoproterozoic Nyong Series, Zambi area, Southwestern Cameroon, Resource Geology 66 (2016) 71–80. https://doi.org/10.1111/rge.12081.
    15. S. Ganno, T. Ngnotue, K.G.D. Nono, J.P. Nzenti, N.M. Fokeng, Petrology and geochemistry of the banded iron-formations from Ntem complex greenstones belt, Elom area, Southern Cameroon: Implications for the origin and depositional environment, Geochemistry 75 (2015) 375–387. https://doi.org/10.1016/j.chemer.2015.08.001.
    16. E.N. Ndime, S. Ganno, L. Soh Tamehe, J.P. Nzenti, Petrography, lithostratigraphy and major element geochemistry of Mesoarchean metamorphosed banded iron formation-hosted Nkout iron ore deposit, north western Congo craton, Central West Africa, Journal of Af-rican Earth Sciences 148 (2018) 80–98. https://doi.org/10.1016/j.jafrearsci.2018.06.007.
    17. G.N. Ngoran, C.E. Suh, D. Bowker, R.B. Verla, G.T. Bafon, Petrochemistry of Two Magnetite Bearing Systems in the Precambrian Belt of Southern Cameroon, International Journal of Geosciences 7 (2016) 501–517. https://doi.org/10.4236/ijg.2016.74038.
    18. L. Soh Tamehe, W. Chongtao, S. Ganno, R. Carlos Alberto, J.P. Nzenti, C.G. Ebotehouna, L. Guanwen, Depositional age and tectonic environment of the Gouap banded iron formations from the Nyong group, SW Cameroon: Insights from isotopic, geochemical and ge-ochronological studies of drillcore samples, Geoscience Frontiers 12 (2021) 549–572. https://doi.org/10.1016/j.gsf.2020.07.009.
    19. L. Soh Tamehe, C. Wei, S. Ganno, S.J. Simon, G.K.N. Djibril, N. Jean Paul, B.L. Yanick, N.H. Lin, Geology of the Gouap iron deposit, Congo craton, southern Cameroon: Implications for iron ore exploration, Ore Geology Reviews 107 (2019) 1097–1128. https://doi.org/10.1016/j.oregeorev.2019.03.034.
    20. L. Soh Tamehe, T. Nzepang, W. Chongtao, S. Ganno, T. Ngnotue, G.D. Kouankap Nono, S.J. Shaamu, Z. Junjian, J.P. Nzenti, Geology and geochemical constrains on the origin and depositional setting of the Kpwa–Atog Boga banded iron formations (BIFs), northwestern Congo craton, southern Cameroon, Ore Geology Reviews 95 (2018) 620–638. https://doi.org/10.1016/j.oregeorev.2018.03.017.
    21. C.E. Suh, A.R. Cabral, E.M. Shemang, L. Mbinkar, G.G.M. Mboudou, Two Contrasting Iron Deposits in the Precambrian Mineral Belt of Cameroon, West Africa, Exploration and Mining Geology 17 (2008) 197–207. https://doi.org/10.2113/gsemg.17.3-4.197.
    22. T. Teutsong, T.R.R. Bontognali, P.-D. Ndjigui, J.C. Vrijmoed, D. Teagle, M. Cooper, D. Vance, Petrography and geochemistry of the Mesoarchean Bikoula banded iron formation in the Ntem complex (Congo craton), Southern Cameroon: Implications for its origin, Ore Geology Reviews 80 (2017) 267–288. https://doi.org/10.1016/j.oregeorev.2016.07.003.
    23. P. Maurizot, A. Abessolo, J.L. Feybesse, V. Joyan, P. Lecomte, Etude et prospection minière du Sud-Ouest Cameroun synthèse des travaux de 1978 à 1985, Rapport du BRGM n 85. (1986).
    24. A. Nédélec, E.N. Nsifa, H. Martin, Major and trace element geochemistry of the Archaean Ntem plutonic complex (south Cameroon): petrogenesis and crustal evolution, Precambrian Research 47 (1990) 35–50. https://doi.org/10.1016/0301-9268(90)90029-P.
    25. J.P. Nzenti, P. Barbey, J. Macaudiere, D. Soba, Origin and evolution of the late precambrian high-grade Yaounde Gneisses (Cameroon), Precambrian Research 38 (1988) 91–109. https://doi.org/10.1016/0301-9268(88)90086-1.
    26. R. Tchameni, K. Mezger, N.E. Nsifa, A. Pouclet, Crustal origin of Early Proterozoic syenites in the Congo Craton Ntem Complex, South Cameroon, Lithos 57 (2001) 23–42. https://doi.org/10.1016/S0024-4937(00)00072-4.
    27. A. Pouclet, R. Tchameni, M. Klaus, M. Vidal, E. Nsifa, C. Shang, J. Penaye, Archaean crustal accretion at the northern border of the Congo Craton (South Cameroon). The charnockite-TTG link, Bulletin de La Société Géologique de France 178 (2007) 331–342. https://doi.org/10.2113/gssgfbull.178.5.331.
    28. T. Takam, M. Arima, K. Joseph, D.J. Daniel, N.N. Emmanuel, Paleoarchaean charnockite in the Ntem Complex, Congo Craton, Came-roon: insights from SHRIMP zircon U-Pb ages, Journal of Mineralogical and Petrological Sciences 104 (2009) 1–11. https://doi.org/10.2465/jmps.080624.
    29. R. Tchameni, C. Lerouge, J. Penaye, A. Cocherie, J.P. Milesi, S.F. Toteu, N.E. Nsifa, Mineralogical constraint for metamorphic condi-tions in a shear zone affecting the Archean Ngoulemakong tonalite, Congo craton (Southern Cameroon) and retentivity of U–Pb SHRIMP zircon dates, Journal of African Earth Sciences 58 (2010) 67–80. https://doi.org/10.1016/j.jafrearsci.2010.01.009.
    30. R. Tchameni, Monozircon and Sm-Nd whole rock ages from the Ebolowa greenstone belts : Evidence for the terranes older than 2.9 Ga in the Ntem Complex (Congo craton, South Cameroon), Journal of Cameroon Academic Sciences 4 (2004) 213–224.
    31. C. Lerouge, A. Cocherie, S.F. Toteu, J. Penaye, J.-P. Milési, R. Tchameni, E.N. Nsifa, C. Mark Fanning, E. Deloule, Shrimp U–Pb zir-con age evidence for Paleoproterozoic sedimentation and 2.05Ga syntectonic plutonism in the Nyong Group, South-Western Came-roon: consequences for the Eburnean–Transamazonian belt of NE Brazil and Central Africa, Journal of African Earth Sciences 44 (2006) 413–427. https://doi.org/10.1016/j.jafrearsci.2005.11.010.
    32. J. Penaye, F.S. Toteu, R. Tchameni, W.R. Van Schmus, J. Tchakounté, A. Ganwa, D. Minyem, E.N. Nsifa, The 2.1Ga West Central Af-rican Belt in Cameroon: extension and evolution, Journal of African Earth Sciences 39 (2004) 159–164. https://doi.org/10.1016/j.jafrearsci.2004.07.053.
    33. S.F. Toteu, W.R. Van Schmus, J. Penaye, J.B. Nyobé, U-Pb and Sm-Nd evidence for Eburnian and Pan-African high-grade metamor-phism in cratonic rocks of southern Cameroon, Precambrian Research 67 (1993) 321–347. https://doi.org/10.1016/0301-9268(94)90014-0.
    34. H. Bouyo, J. Penaye, H. Mouri, F.S. Toteu, Eclogite facies metabasites from the Paleoproterozoic Nyong Group, SW Cameroon: Miner-alogical evidence and implications for a high-pressure metamorphism related to a subduction zone at the NW margin of the Archean Congo craton, Journal of African Earth Sciences 149 (2019) 215–234. https://doi.org/10.1016/j.jafrearsci.2018.08.010.
    35. Loose, V. Schenk, 2.09 Ga old eclogites in the Eburnian-Transamazonian orogen of southern Cameroon: Significance for Palaeoprote-rozoic plate tectonics, Precambrian Research 304 (2018) 1–11. https://doi.org/10.1016/j.precamres.2017.10.018.
    36. M. Houketchang Bouyo, J. Penaye, H. Mouri, S.F. Toteu, Eclogite facies metabasites from the Paleoproterozoic Nyong Group, SW Cameroon: Mineralogical evidence and implications for a high-pressure metamorphism related to a subduction zone at the NW margin of the Archean Congo craton, Journal of African Earth Sciences 149 (2019) 215–234. https://doi.org/10.1016/j.jafrearsci.2018.08.010.
    37. S.M. McLennan, Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes, Reviews in Mineralo-gy and Geochemistry (1989) 169–200. https://doi.org/10.1515/9781501509032-010.
    38. S.R. Taylor, S.M. McLennan, The continental crust: Its composition and evolution, Blackwell Publishing (1985) 312.
    39. C. Klein, Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamor-phism, geochemistry, and origins, American Mineralogist 90 (2005) 1473–1499. https://doi.org/10.2138/am.2005.1871.
    40. F.F. Basta, A.E. Maurice, L. Fontboté, P.-Y. Favarger, Petrology and geochemistry of the banded iron formation (BIF) of Wadi Karim and Um Anab, Eastern Desert, Egypt: Implications for the origin of Neoproterozoic BIF, Precambrian Research 187 (2011) 277–292. https://doi.org/10.1016/j.precamres.2011.03.011.
    41. E. Pecoits, M.K. Gingras, M.E. Barley, A. Kappler, N.R. Posth, K.O. Konhauser, Petrography and geochemistry of the Dales Gorge banded iron formation: Paragenetic sequence, source and implications for palaeo-ocean chemistry, Precambrian Research 172 (2009) 163–187. https://doi.org/10.1016/j.precamres.2009.03.014.
    42. T. Gnaneshwar Rao, S.M. Naqvi, Geochemistry, depositional environment and tectonic setting of the BIF’s of the Late Archaean Chitradurga Schist Belt, India, Chemical Geology 121 (1995) 217–243. https://doi.org/10.1016/0009-2541(94)00116-P.
    43. P.V. Sunder Raju, Petrography and geochemical behaviour of trace element, REE and precious metal signatures of sulphidic banded iron formations from the Chikkasiddavanahalli area, Chitradurga schist belt, India, Journal of Asian Earth Sciences 34 (2009) 663–673. https://doi.org/10.1016/j.jseaes.2008.10.005.
    44. A.M. Mloszewska, E. Pecoits, N.L. Cates, S.J. Mojzsis, J. O’Neil, L.J. Robbins, K.O. Konhauser, The composition of Earth’s oldest iron formations: The Nuvvuagittuq Supracrustal Belt (Québec, Canada), Earth and Planetary Science Letters 317–318 (2012) 331–342. https://doi.org/10.1016/j.epsl.2011.11.020.
    45. M. Bau, P. Dulski, Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa, Precambrian Research 79 (1996) 37–55. https://doi.org/10.1016/0301-9268(95)00087-9.
    46. H.D. Holland, The Oceans; A Possible Source of Iron in Iron-Formations, Economic Geology 68 (1973) 1169–1172. https://doi.org/10.2113/gsecongeo.68.7.1169.
    47. D.L. Huston, G.A. Logan, Barite, BIFs and bugs: evidence for the evolution of the Earth’s early hydrosphere, Earth and Planetary Sci-ence Letters 220 (2004) 41–55. https://doi.org/10.1016/S0012-821X(04)00034-2.
    48. A. Danielson, P. Möller, P. Dulski, The europium anomalies in banded iron formations and the thermal history of the oceanic crust, Chemical Geology 97 (1992) 89–100. https://doi.org/10.1016/0009-2541(92)90137-T.
    49. T.-G. Lan, H.-R. Fan, F.-F. Hu, K.-F. Yang, Y.-C. Cai, Y.-S. Liu, Depositional environment and tectonic implications of the Paleoprote-rozoic BIF in Changyi area, eastern North China Craton: Evidence from geochronology and geochemistry of the metamorphic wallrocks, Ore Geology Reviews 61 (2014) 52–72. https://doi.org/10.1016/j.oregeorev.2014.01.007.
    50. C. Klein, N.J. Beukes, Sedimentology and geochemistry of the glaciogenic late Proterozoic Rapitan Iron-Formation in Canada, Econom-ic Geology 88 (1993) 542–565. https://doi.org/10.2113/gsecongeo.88.3.542.
    51. C. Manikyamba, S.M. Naqvi, Geochemistry of Fe-Mn formations of the Archaean Sandur schist belt, India - mixing of clastic and chemical processes at a shallow shelf, Precambrian Research 72 (1995) 69–95. https://doi.org/10.1016/0301-9268(94)00050-2.
    52. Ya.N. Belevtsev, Volcanogenic-sedimentary origin of magnetite ores of the Urals, International Geology Review 24 (1982) 1405–1416. https://doi.org/10.1080/00206818209467200.
    53. K. Boström, Submarine volcanism as a source for iron, Earth and Planetary Science Letters 9 (1970) 348–354. https://doi.org/10.1016/0012-821X(70)90134-2.
    54. E.G. Gurvich, Metalliferous sediments of the world ocean: Fundamental theory of deep-sea hydrothermal sedimentation, Metalliferous Sediments of the World Ocean: Fundamental Theory of Deep-Sea Hydrothermal Sedimentation (2006) 200–300. https://doi.org/10.1007/3-540-30969-1.
    55. J.H. Choi, Y. Hariya, Geochemistry and depositional environment of Mn oxide deposits in the Tokoro Belt, northeastern Hokkaido, Japan, Economic Geology 87 (1992) 1265–1274. https://doi.org/10.2113/gsecongeo.87.5.1265.
    56. V. Marchig, H. Gundlach, Iron-rich metalliferous sediments on the East Pacific Rise: prototype of undifferentiated metalliferous sedi-ments on divergent plate boundaries, Earth and Planetary Science Letters 58 (1982) 361–382. https://doi.org/10.1016/0012-821X(82)90086-3.
    57. T.J. Barrett, Chemistry and mineralogy of Jurassic bedded chert overlying ophiolites in the North Apennines, Italy, Chemical Geology 34 (1981) 289–317. https://doi.org/10.1016/0009-2541(81)90118-2.
    58. K. Boström, Origin and Fate of Ferromanganoan Active Ridge Sediments, in: Pelagic Sediments: On Land and under the Sea, John Wiley & Sons, Ltd, 1975: pp. 149–243. https://doi.org/10.1002/9781444304855.ch18.
    59. K. Boström, T. Kraemer, S. Gartner, Provenance and accumulation rates of opaline silica, Al, Ti, Fe, Mn, Cu, Ni and Co in Pacific pe-lagic sediments, Chemical Geology 11 (1973) 123–148. https://doi.org/10.1016/0009-2541(73)90049-1.
    60. P.D. González, A.M. Sato, E.J. Llambías, L.A. Petronilho, Petrology and geochemistry of the banded iron formation in the Eastern Sier-ras Pampeanas of San Luis (Argentina): Implications for the evolution of the Nogolí Metamorphic Complex, Journal of South Ameri-can Earth Sciences 28 (2009) 89–112. https://doi.org/10.1016/j.jsames.2009.03.005.
    61. J.R. Toth, Deposition of submarine crusts rich in manganese and iron, GSA Bulletin 91 (1980) 44–54. https://doi.org/10.1130/0016-7606(1980)91<44:DOSCRI>2.0.CO;2. https://doi.org/10.1130/0016-7606(1980)91<44:DOSCRI>2.0.CO;2.
    62. N.J. Beukes, Precambrian Iron-Formations of Southern Africa, Economic Geology 68 (1973) 960–1004. https://doi.org/10.2113/gsecongeo.68.7.960.
    63. H.N. Bhattacharya, I. Chakraborty, K.K. Ghosh, Geochemistry of some banded iron-formations of the Archean supracrustals, Jhar-khand-Orissa region, India, J Earth Syst Sci 116 (2007) 245–259. https://doi.org/10.1007/s12040-007-0024-4.
    64. H.L. James, Sedimentary facies of iron-formation, Economic Geology 49 (1954) 235–293. https://doi.org/10.2113/gsecongeo.49.3.235.
    65. D.C.I. Ilouga, C.E. Suh, G.R. Tanwi, Textures and Rare Earth Elements Composition of Banded Iron Formations (BIF) at Njweng Pro-spect, Mbalam Iron Ore District, Southern Cameroon, IJG 04 (2013) 146–165. https://doi.org/10.4236/ijg.2013.41014.
    66. H. Tsikos, J.M. Moore, Petrography and geochemistry of the Paleoproterozoic Hotazel Iron-Formation, Kalahari manganese field, South Africa; implications for Precambrian manganese metallogenesis, Economic Geology 92 (1997) 87–97. https://doi.org/10.2113/gsecongeo.92.1.87.
    67. N. Planavsky, A. Bekker, O.J. Rouxel, B. Kamber, A. Hofmann, A. Knudsen, T.W. Lyons, Rare Earth Element and yttrium composi-tions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition, Geochimica et Cosmochimica Acta 74 (2010) 6387–6405. https://doi.org/10.1016/j.gca.2010.07.021.
    68. B.J. Fryer, Rare earth evidence in iron-formations for changing Precambrian oxidation states, Geochimica et Cosmochimica Acta 41 (1977) 361–367. https://doi.org/10.1016/0016-7037(77)90263-0.
  • Downloads

  • How to Cite

    Edjo-Minko, R., Isaac Bertrand Mbowou , G., Daama , I. ., Nguihdama, D. . ., & Mienlam Essi , M.-F. . (2024). The Petrography and geochemistry of iron-bearing units from Mingo’o area (Ntem complex, southern Cameroon). International Journal of Advanced Geosciences, 12(1), 35-46. https://doi.org/10.14419/00a8vb15