Evaluating the geological and soil characteristics influencing landslide susceptibility in Anambra state, Nigeria

  • Authors

    • Odoh Benard Ifeanyi Nnamdi Azikiwe University Awka
    • Nwokeabia Charity Nkiru Nnamdi Azikiwe University Awka
    2024-10-31
    https://doi.org/10.14419/b8h57620
  • Dystric Nitosols; Geological formations; Gleysols; Soil erodibility .
  • Abstract

    This study investigates soil erodibility in three Local Government Areas (LGAs) within Anambra State, Nigeria—Ekwusigo, Ihiala, and Ogbaru—situated in the lower Niger River Basin prone to frequent and severe flooding. The aim is to assess geological and soil characteristics influencing landslide susceptibility. The methodology involves identifying and characterizing soil types, calculating the Soil Erodibility Factor (K) using empirical formulas, and mapping erosion susceptibility. Data from the Soil Map of the World (version 3.6) were used, corrected for accuracy, and integrated into geographic projections. Analysis included William’s equation to calculate K factors based on soil properties such as sand, silt, clay, and organic matter content. Results highlight diverse geological formations: Ameki Group (34.24%), Benin Formation (0.26%), Ogwashi-Asaba Formation (1.59%), River Niger (1.86%), Sands, Gravels, and Clay (42.36%), and Sombreiro Warri Deltaic Plain (19.69%). Soil types identified include Dystric Nitosols (K = 0.0178) covering 449.11 km² and Gleysols (K = 0.0189) covering 283.95 km², each exhibiting unique erosion susceptibilities. Gleysols are characterized by poor drainage and high-water retention, posing higher landslide risks during heavy rainfall compared to Dystric Nitosols. The correlation between K factors and hydrological data, showing Gleysols as more vulnerable to landslides in wet conditions. Recommendations include targeted erosion control measures like terracing, vegetative buffers, and improved drainage systems for high-risk zones. Maintaining vegetative cover and implementing sustainable land management practices are crucial for mitigating erosion and landslide risks. This study provides a detailed understanding of geological and soil factors affecting landslide susceptibility in Anambra State. It underscores the need for tailored soil conservation and landslide mitigation strategies aligned with specific geological formations and soil types, contributing to sustainable land management practices in flood-prone regions.

  • References

    1. Achasov, A., Achasova, A., Titenko, G., Seliverstov, O., & Krivtsov, V. (2021). Assessment of the Ecological Condition of Soil Cover Based on Remote Sensing Data: Erosional Aspect. SHS Web of Conferences, 100, 05014. https://doi.org/10.1051/shsconf/202110005014.
    2. Adewumi, R., Agbasi, O., & Mayowa, A. (2023). Investigating groundwater potential in northeastern basement complexes: A Pulka case study using geospatial and geo-electrical techniques. HydroResearch, 6, 73–88. https://doi.org/10.1016/j.hydres.2023.02.003.
    3. Ahmad, N. S. B. N., Mustafa, F. B., Yusoff, S. Y. M., & Didams, G. (2020). A systematic review of soil erosion control practices on the agricultural land in Asia. International Soil and Water Conservation Research/International Soil and Water Conservation Research, 8(2), 103–115. https://doi.org/10.1016/j.iswcr.2020.04.001.
    4. Aigbadon, G. O., Ocheli, A., & Akudo, E. O. (2021). Geotechnical Evaluation of Gully Erosion and Landslides Materials and their Im-pact in Iguosa and its Environs, Western Anambra Basin, Nigeria. Research Square (Research Square). https://doi.org/10.21203/rs.3.rs-390812/v1.
    5. Alaboz, P., Dengiz, O., Demir, S., & Şenol, H. (2021). Digital mapping of soil erodibility factors based on decision tree using geostatis-tical approaches in terrestrial ecosystem. Catena, 207, 105634. https://doi.org/10.1016/j.catena.2021.105634.
    6. Aladejana, O. O., Salami, A. T., & Adetoro, O. I. O. (2018). Hydrological responses to land degradation in the Northwest Benin Owena River Basin, Nigeria. Journal of Environmental Management, 225, 300–312. https://doi.org/10.1016/j.jenvman.2018.07.095.
    7. Amah, J. I., Aghamelu, O. P., Omonona, O. V., & Onwe, I. M. (2020). A Study of the Dynamics of Soil Erosion Using Rusle2 Model-ling and Geospatial Tool in Edda-Afikpo Mesas, South Eastern Nigeria. Pakistan Journal of Geology, 4(2), 56–71. https://doi.org/10.2478/pjg-2020-0007.
    8. Amah, J. I., Aghamelu, O. P., Omonona, O. V., Onwe, I. M., & Agbi, I. O. (2021). Analysis of the impacts of hydrology, soil proper-ties, and geotechnics on gully propagation on the Edda-Afikpo Mesas of the Lower Cross River watershed (southeastern Nigeria). Journal of African Earth Sciences, 174, 104074. https://doi.org/10.1016/j.jafrearsci.2020.104074.
    9. Aslam, B., Maqsoom, A., Alaloul, W. S., Musarat, M. A., Jabbar, T., & Zafar, A. (2021). Soil erosion susceptibility mapping using a GIS-based multi-criteria decision approach: Case of district Chitral, Pakistan. Ain Shams Engineering Journal/Ain Shams Engineering Journal, 12(2), 1637–1649. https://doi.org/10.1016/j.asej.2020.09.015.
    10. Ayadiuno, R. U., Ndulue, D. C., Mozie, A., & Ndichie, C. (2021). The Underlying Factors of Soil Susceptibility to Erosion in Central Parts of Southeastern Nigeria. Alınteri Zirai Bilimler Dergisi./Alınteri Zirai Bilimler Dergisi :, 36(2), 196–207. https://doi.org/10.47059/alinteri/V36I2/AJAS21134.
    11. Azare, I., Abdullahi, Adebayo, A., Dantata, I., & Duala, T. (2020). Deforestation, desert encroachment, climate change and agricultural production in the Sudano-Sahelian Region of Nigeria. Journal of Applied Science & Environmental Management, 24(1), 127. https://doi.org/10.4314/jasem.v24i1.18.
    12. Didoné, E. J., Minella, J. P. G., & Piccilli, D. G. A. (2021). How to model the effect of mechanical erosion control practices at a catch-ment scale? International Soil and Water Conservation Research/International Soil and Water Conservation Research, 9(3), 370–380. https://doi.org/10.1016/j.iswcr.2021.01.007.
    13. Egbinola, C., Olaniran, H., & Amanambu, A. (2015). Flood management in cities of developing countries: the example of Ibadan, Nige-ria. Journal of Flood Risk Management, 10(4), 546–554. https://doi.org/10.1111/jfr3.12157.
    14. Faboya, O. L., Sonibare, O. O., Xu, J., Olowookere, N., & Liao, Z. (2020). Mineralogical and pore structure of organic-rich deltaic shales and sub-bituminous coals from early Maastrichtian Mamu Formation, Anambra Basin, Nigeria. SN Applied Sciences/SN Applied Sciences, 2(12). https://doi.org/10.1007/s42452-020-03899-1.
    15. Guo, L., Yang, Y., Zhao, Y., Li, Y., Sui, Y., Tang, C., Jin, J., & Liu, X. (2021). Reducing topsoil depth decreases the yield and nutrient uptake of maize and soybean grown in a glacial till. Land Degradation & Development, 32(9), 2849–2860. https://doi.org/10.1002/ldr.3868.
    16. Hall, S. J., Huang, W., Timokhin, V. I., & Hammel, K. E. (2020). Lignin lags, leads, or limits the decomposition of litter and soil organ-ic carbon. Ecology, 101(9). https://doi.org/10.1002/ecy.3113.
    17. Luo, T., Liu, W., Xia, D., Xia, L., Guo, T., Ma, Y., Xu, W., & Hu, Y. (2022). Effects of land use types on soil erodibility in a small karst watershed in western Hubei. PeerJ, 10, e14423. https://doi.org/10.7717/peerj.14423.
    18. Ma, L., Li, J., & Liu, J. (2020). Effects of antecedent soil water content on infiltration and erosion processes on loessial slopes under simulated rainfall. Nordic Hydrology, 51(5), 882–893. https://doi.org/10.2166/nh.2020.013.
    19. Mwaniki, M. W., Agutu, N. O., Mbaka, J. G., Ngigi, T. G., & Waithaka, E. H. (2015). Landslide scar/soil erodibility mapping using Landsat TM/ETM+ bands 7 and 3 Normalised Difference Index: A case study of central region of Kenya. Applied Geography, 64, 108–120. https://doi.org/10.1016/j.apgeog.2015.09.009.
    20. Nebeokike, U. C., Igwe, O., Egbueri, J. C., & Ifediegwu, S. I. (2020). Erodibility characteristics and slope stability analysis of geologi-cal units prone to erosion in Udi area, southeast Nigeria. Modeling Earth Systems and Environment, 6(2), 1061–1074. https://doi.org/10.1007/s40808-020-00741-w.
    21. Okeke, C. A., Azuh, D., Ogbuagu, F. U., & Kogure, T. (2020). Assessment of land use impact and seepage erosion contributions to seasonal variations in riverbank stability: The Iju River, SW Nigeria. Groundwater for Sustainable Development, 11, 100448. https://doi.org/10.1016/j.gsd.2020.100448.
    22. Omietimi, E. J., Chouhan, A. K., Lenhardt, N., Yang, R., & Bumby, A. J. (2021). Structural interpretation of the south-western flank of the Anambra Basin (Nigeria) using satellite-derived WGM 2012 gravity data. Journal of African Earth Sciences, 182, 104290. https://doi.org/10.1016/j.jafrearsci.2021.104290.
    23. Rehm, R., Zeyer, T., Schmidt, A., & Fiener, P. (2021). Soil erosion as transport pathway of microplastic from agriculture soils to aquatic ecosystems. Science of the Total Environment, 795, 148774. https://doi.org/10.1016/j.scitotenv.2021.148774.
    24. Rosskopf, C. M., Di Iorio, E., Circelli, L., Colombo, C., & Aucelli, P. P. (2020). Assessing spatial variability and erosion susceptibility of soils in hilly agricultural areas in Southern Italy. International Soil and Water Conservation Research/International Soil and Water Conservation Research, 8(4), 354–362. https://doi.org/10.1016/j.iswcr.2020.09.005.
    25. Seabloom, E. W., Adler, P. B., Alberti, J., Biederman, L., Buckley, Y. M., Cadotte, M. W., Collins, S. L., Dee, L., Fay, P. A., Firn, J., Hagenah, N., Harpole, W. S., Hautier, Y., Hector, A., Hobbie, S. E., Isbell, F., Knops, J. M. H., Komatsu, K. J., Laungani, R., . . . Borer, E. T. (2021). Increasing effects of chronic nutrient enrichment on plant diversity loss and ecosystem productivity over time. Ecology, 102(2). https://doi.org/10.1002/ecy.3218.
    26. Songu, G., Abu, R., Temwa, N., Yiye, S., Wahab, S., & Mohammed, B. (2021). Analysis of Soil Erodibility Factor for Hydrologic Pro-cesses in Kereke Watershed, North Central Nigeria. Journal of Applied Science and Environmental Management, 25(3), 425–432. https://doi.org/10.4314/jasem.v25i3.18.
    27. Tian, D., Xie, Q., Fu, X., & Zhang, J. (2020). Experimental study on the effect of fine contents on internal erosion in natural soil de-posits. Bulletin of Engineering Geology and the Environment, 79(8), 4135–4150. https://doi.org/10.1007/s10064-020-01829-4.
    28. Touma, B. R., Kondolf, G. M., & Walls, S. (2020). Impacts of sediment derived from erosion of partially-constructed road on aquatic organisms in a tropical river: The Río San Juan, Nicaragua and Costa Rica. PloS One, 15(11), e0242356. https://doi.org/10.1371/journal.pone.0242356.
    29. Ukabiala, M. E., Kolo, J., Obalum, S. E., Amhakhian, S. O., Igwe, C. A., & Hermensah, N. (2021). Physicochemical properties as relat-ed to mineralogical composition of floodplain soils in humid tropical environment and the pedological significance. Environmental Monitoring and Assessment, 193(9). https://doi.org/10.1007/s10661-021-09329-y.
    30. Ukpai, S. N., Ojobor, R. G., Okogbue, C. O., Nnabo, P. N., Oha, A. I., Ekwe, A. C., & Nweke, M. O. (2021). Socio-economic influence of hydrogeology in regions adjoining coal bearing formation: Water policy in Anambra Basin. Water Policy. https://doi.org/10.2166/wp.2021.275.
    31. Wali, S. U., Dankani, I. M., Abubakar, S. D., Gada, M. A., Umar, K. J., Usman, A. A., & Shera, I. M. (2020). Reassessing Groundwater Potentials and Subsurface water Hydrochemistry in a Tropical Anambra Basin, Southeastern Nigeria. Journal of Geological Research, 2(3), 1–24. https://doi.org/10.30564/jgr.v2i3.2141.
    32. Wang, J., Lautz, L. S., Nolte, T. M., Posthuma, L., Koopman, K. R., Leuven, R. S., & Hendriks, A. J. (2021). Towards a systematic method for assessing the impact of chemical pollution on ecosystem services of water systems. Journal of Environmental Manage-ment, 281, 111873. https://doi.org/10.1016/j.jenvman.2020.111873.
    33. Yang, M., Yang, Q., Zhang, K., Li, Y., Wang, C., & Pang, G. (2021). Effects of Content of Soil Rock Fragments on Calculating of Soil Erodibility. https://doi.org/10.5194/egusphere-egu21-1976.
    34. Yao, Y., Liu, J., Wang, Z., Wei, X., Zhu, H., Fu, W., & Shao, M. (2020). Responses of soil aggregate stability, erodibility and nutrient enrichment to simulated extreme heavy rainfall. Science of the Total Environment, 709, 136150. https://doi.org/10.1016/j.scitotenv.2019.136150.
    35. Yu, S., Ren, X., Zhang, J., Wang, H., & Zhang, Z. (2020). Sensibility Analysis of the Hydraulic Conductivity Anisotropy on Seepage and Stability of Sandy and Clayey Slope. Water, 12(1), 277. https://doi.org/10.3390/w12010277.
  • Downloads

  • How to Cite

    Benard Ifeanyi , O. ., & Charity Nkiru , N. . (2024). Evaluating the geological and soil characteristics influencing landslide susceptibility in Anambra state, Nigeria. International Journal of Advanced Geosciences, 12(2), 98-105. https://doi.org/10.14419/b8h57620