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Abstract 

 

A new unconditional inequality of the totient function is contributed to the literature. This result is associated with 

various unsolved problems about the distribution of prime numbers. 
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1 Introduction 

The totient function ( ) #{ : gcd( , ) 1}N n N n N    , which counts the number of relatively prime integers less than 

N, is a sine qua non in number theory. It and its various generalizations appear everywhere in the mathematical 

literature. The product form representation 

 

|

( ) (1 1/ )

p N

N N p                                                                             (1) 

 

unearths its intrinsic link to the distribution of the prime numbers. The totient function (N) is an oscillatory function, 

its value oscillates from its maximum (N) = N  1 at prime integers N to its minimum (N) = N/c0loglog N, at the 

primorial integers  1 22 3 kvv v
kN p  , where pi is the kth prime, vi  1, and c0 > 1 is a constant. The new contributions 

to the literature are the unconditional estimates stated below. 

 

Theorem 1: Let pi be the kth prime, and let Nk = 235pk, k  1. Then / ( ) loglogk k kN N e N   for all sufficiently 

large primorial integer Nk. 

 

This unconditional result is consistent with the Riemann hypothesis, and seems to prove the Nicolas inequality, 

Theorem 4 below, for all sufficiently large integers. Just a finite number of cases of primorial integers Nk  N0 remain 

unresolved as possible counterexamples of the inequality.  

 

Theorem 2: The function 0( ) / / logloglogN N c N   for almost every integer N  1, and c0 > 0 constant. 

 

Currently the best unconditional estimate of this arithmetical function in the literature is the followings: 

 

Theorem 3: ([13]) Let N  ℕ, then / ( ) loglog 5 / (2loglog )N N e N N N    with one exception for N = 23 23. 

On the other hand, there are several conditional criteria; one of these is listed below. 

 

Theorem 4: ([12]) Let Nk = 235pk be the product of the first k primes. 

1) If the Riemann Hypothesis is true then / ( ) loglogk k kN N e N   for all k  1. 

2) If the Riemann Hypothesis is false then both / ( ) loglogk k kN N e N   and / ( ) loglogk k kN N e N   

occur for infinitely many k  1. 

Some related and earlier works on this topic include the works of Ramanujan, Erdos, and other on abundant numbers, 

see [11], [2], and recent related works appeared in [2], [3], [9], [14], and [20].  
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The next section covers some background materials focusing on some finite sums over the prime numbers and some 

associated and products. The proofs of Theorems 1 and 2 are given in the last two sections respectively.  

 

2 Background materials 

This section provides a survey of supporting materials. An effort was made to have a self-contained paper as much as 

possible, but lengthy proofs available in the literature are omitted. 

 

2.1   Sums and products over the primes. 
 

The most basic finite sum over the prime numbers is the prime harmonic sum 1

n x
p

 . The refined estimate of this 

finite sum, stated below, is a synthesis of various results due to various authors. The earliest version 
1

1loglog (1/ log )
n x

p x B O x


    is due to Mertens, see [17]. 

Theorem 5: Let x  2 be a sufficiently large number. Then 
1/2(loglog )

1

1/2
1

loglog ( ),
1

loglog ((log ) ),

l

c x

p x

x B O e                                          unconditionally,

x B O x                                           conditional on the Riemann hypothesis,
p







 

  
1/2

1oglog ((log ) logloglog / log ),x B x x x             unconditional oscillations,








    
Where B1 = .2614972128                                                                                                                                                  (2) 

Proof: Use the integral representation of the finite sum 

1 ( )
x

p x c

d t

p t



 

,                                                                                                                                                  (3) 

Where c > 1 is a small constant. Moreover, the prime counting function p(x) = #{ p £ x : p is prime }
 
has the 

form 
1/2(log )

1/2

1/2

( ) ( ),

( ) ( ) ( log ),

( ) ( logloglog / log ),

c xli x O xe                                  unconditionally,

x li x O x x                                    conditional on the Riemann hypothesis,

li x x x x   







  

           unconditional oscillations.






     (4) 

 

The unconditional part of the prime counting formula arises from the delaVallee Poussin form of the prime number 

theorem 
1/2(log )( ) ( ) ( )c xx li x O xe    , see [10, p. 179], the conditional part arises from the Riemann form of the 

prime number theorem 1/2( ) ( ) ( log )x li x O x x   , and the unconditional oscillations part arises from the Littlewood 

form of the prime number theorem 1/2( ) ( ) ( logloglog / log )x li x x x x   , consult [7, p. 51], [10, p. 479] et cetera.  

Now replace the logarithm integral 1

0
( ) ( log )

x

li x t t dt  , and the appropriate prime counting measure ( )d t , and 

simplify the integral. 

The proof of the unconditional part of this result is widely available in the literature; see [6], [10], [16], et cetera. The 

omega notation ( ) ( ) ( ( ))f x g x h x   means that both 0( ) ( ) ( )f x g x c h x   and 0( ) ( ) ( )f x g x c h x   occur 

infinitely often as x  , where c0 > 0 is a constant, see [10, p. 5], [18].  

As an application of the last result, there is the following interesting product: 

Theorem 6: Let x  ℝ be a large real number, then 
1/2(log )

1

1/2

log ( ),
1

1 log ( ),

log (

c x

p x

e x O e                                      unconditionally,

e x O x                                            conditional on the Riemann hypothesis,
p

e x

 



 

 



 
   

 



1/2 logloglog / log ),x x x              unconditional oscillations,






                   (5) 

Proof: Consider the logarithm of the product 
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1

1 1
log 1 1/

1 1
( ) ,

n
p x p x np x

p x

p
p np

B O
p x



  



  

    

 


                                                                                                    (6) 

where the Euler constant is defined by  1lim logx n x
n n 0.577215665...

 
    , and the Mertens constant is 

defined by  1 2
log(1 1/ ) 1/

p
B p p .2614972128...


      , see  [6, p. 466]. The last equality in (6) stems from 

the power series expansion 1
1 2 2

( )n

p n
B np 

 
    , which yields 

1

2 2

1

1 1

1
( )

n n
p x n p x n

B
np np

B O
x

   

   

   

 

                                                                                                                           
(7) 

Applying Theorem 5 returns  
1/2(log )

1

1/2

1/2

loglog ( ),
1

log 1 loglog ( ),

loglog ( l

c x

p x

x O e                             unconditionally,

x O x                                   conditional on the Riemann hypothesis,
p

x x







 


  
 
     

 
  


ogloglog / log ),x x     unconditional oscillations.






           (8) 

And reversing the logarithm completes the verification. 

The third part in (5) above simplifies the proof given in [5] of the following result: 

The quantity 

   
11/2 log 1 1/ log

p x
x x p e x

 



   
                                                                                                      (9) 

attains arbitrary large positive and negative values as x  . 

 

3 An estimate of the Totient function 

The proof of Theorem 3 on the extreme values of the arithmetic function / ( )N N  relies on the oscillation theorem of 

the finite prime product
1

(1 1/ )
p x

p



 . This technique leads to a concise and simpler proof. A completely 

elementary proof, but longer, and not based on the oscillation theorem was presented in the earlier version of this paper. 

 

Theorem 1: Let N  ℕ be a primorial integer, then 2/ ( ) 6 loglogN N e N     holds unconditionally for all 

sufficiently large N = 235pk. 

 

Proof: Theorem 6 implies that the product 

 
1

1/2

logloglog
1 1/ log

log
p x

x
p e x

x x

 




 
     

 
 .                                                                                                          (10) 

In particular, it follows that 

 
1

0 1/2

logloglog
1 1/ log

log
p x

x
p e x c

x x

 



                                                                                                                       (11) 

And 

 
1

0 1/2

logloglog
1 1/ log

log
p x

x
p e x c

x x
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Occur infinitely often as x  , where c0 > 0, c1 > 0, and c2 > 0 are constants. It shows that 
1

(1 1/ )
p x

p



  

oscillates infinitely often, symmetrically about the line eg log x  as x  .  

To rewrite the variable x  1 in terms of the integer N, recall that the Chebychev function 

satisfies ( ) log
p x

x p cx


   , c1 > 1, see [15]. The properties of this function lead to 

log log ( )
k

k kp p
N p p


   , and 1( ) ( ) logk k k kp p o p c N    .                                                                   (12) 

So it readily follows that 1 logk kp x c N  . Moreover, since the maxima of the sum of divisors function 

 
1

2
|||

( ) 1 1 1
1 1 1/

p Np N

N
p

N p p p





 
       

 
  ,                                                                                                 (13) 

where the symbol p

 || N denotes the maximal prime power divisor of N, occur at the colossally abundant 

integers 1 22 3 kvv v
kN p  , and v1 ≥  v2 ≥  ≥ vk ≥ 1,  see [2], [3], [9], [11], it follows  that the maxima of the inverse 

totient function N/(N) occur at the squarefree primorial integers Nk = 235pk. Therefore, expressions (10) and (11) 

implies that 

 
1

1

log

2 1/2

1 1/
( )

loglogloglog
loglog

(log ) loglog

loglog

k

k

k p c N

k
k

k k

k

N
p

N

N
e N c

N N

e N









 


 





                                                                                                      (14) 

as the primorial integer Nk = 235pk tends to infinity. 

 

4 Probabilistic properties 

The natural density function 

( ) lim #{ : / ( ) }/
N

B t n N N N t N


                                                                                                                         (15) 

Is known to be a continuous function of t ≥ 0. Some recent works have established the exact asymptotic expression  

  2( ) exp 1 (1/ )e tB t e O t


                                                                                                                                       (16) 

As t tends to infinity, see [19], [20].  

The evaluation of the natural density (15) at log logt e N  as N   suggests that the Nicolas inequality should 

be ( ) 1log log / ( ) log logk
k k k ke N N N e N     . The numerical data are compiled in [8]. 

Now, note that the evaluation at log loglogt e N  as N    yields the density function 

  

 

2

2

( log log log ) exp 1 (1/ )

1
1 (1/ (log log log ) ) .

log

e tB t e N e O t

O N
N

   

 

                                                                                        (17) 

Consequently, the subset of integers N  1 such that 0/ ( ) logloglogN N c N   has zero density with respect to the set 

of integers ℕ. A simple proof of this result is included here. 

 

Theorem 2: The function 0( ) / logloglogN c N N   for almost every integer N  1, and c0 > 0 constant. 

 

Proof: The prime divisors counting function satisfies 1( ) #{ | } loglogN p N c N    for almost every integer N  1, 

this is Ramanujan Theorem. In addition,  

2
|

1
(1 1/ ) (1 1/ ) 1

log 2log
p N p x

e
p p

x x





 
      

 
  ,                                                                                                      (18) 
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where x  2 is a suitable real number, holds for every integer N  1, this is Mertens Theorem. Furthermore, by the Prime 

Number Theorem, the nth prime 2 lognp c n n . In light of these facts, put  

2 1 1

3

( log log ) log( log log )

log log log log log ,

x c c N c N

c N N




                                                                                                                             (19) 

where c1, c2, c3, c4, are constants. Substituting (19) into the previous relation (18) implies that 

|

4

(1 1/ ) (1 1/ )

log log log

np N p p

p p

c

N



  



 
                                                                                                                                          (20) 

holds for almost every integer N  1. Ergo, the ratio 4
|

( ) / (1 1/ ) / log log log
p N

N N p c N     holds for almost 

every integer N  1 as claimed. 

Corollary 7: The function 5( ) logloglogN c N N   for almost every integer N  1, and c5 > 0 constant. 

 

Proof: The sigma-phi identity, on the first line below, coupled with Theorem 2 lead to 

1

||

5

( )
(1 1/ )

( )

( )

log log log ,

p N

N N
p

N N

N

N

c N N




 









                                                                                                                                    (21) 

where c5 is a constant, holds for almost every integer N  1. 
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