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Abstract

Semilinear parabolic equations with forcing terms are discussed, and sufficient conditions for every classical global
solution of boundary value problems to be unbounded on a cylindrical domain in Rn+1. The approach used is to
reduce the multi-dimensional problems to one-dimensional problems for first-order ordinary differential inequalities.
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1 Introduction

Since the pioneering work of McNabb [14], unboundedness of classical global solutions of parabolic equations or
systems has been developed via Picone identity by numerous authors. We refer the reader to Dunninger [4], Jaroš,
Kusano and Yoshida [7, 8], Kusano and Narita [13] and McNabb [14] for parabolic equations, and to Chan [1],
Chan and Young [2], Kobayashi and Yoshida [9], Kuks [11] for parabolic systems. In particular, we mention the
paper [12] by Kuks and Svirchevskii which deals with parabolic difference equations. However, all of them pertain
to time-dependent parabolic equations or systems without forcing terms. The approach used is to utilize the Picone
identity or Picone-type inequality for elliptic operators with time-dependent coefficients.

We are concerned with the parabolic equation with forcing term

∂u

∂t
− a(t)∆u+ p(x, t)φ(u) = f(x, t), (x, t) ∈ G× (0,∞), (1)

where ∆ denotes the Laplacian in Rn and G is a bounded domain in Rn with piecewise smooth boundary ∂G.
We consider two kinds of boundary conditions:

(B1) u = ψ1 on ∂G× (0,∞),

(B2)
∂u

∂ν
+ µu = ψ2 on ∂G× (0,∞),

where ψ1, ψ2 ∈ C(∂G × [0,∞);R), µ ∈ C(∂G × [0,∞); [0,∞)), and ν denotes the unit exterior normal vector to
∂G.

It is assumed that:

(H1) a(t) ∈ C([0,∞); [0,∞)) and a(t) is bounded from above, i.e., there exists a constant M1 > 0 such that

0 ≤ a(t) ≤M1, t ∈ [0,∞);

(H2) p(x, t) ∈ C(G × [0,∞); [0,∞)) and p(x, t) is bounded from above, i.e., there exists a constant M2 > 0 such
that

0 ≤ p(x, t) ≤M2, (x, t) ∈ G× [0,∞);

(H3) φ(ξ) ∈ C(R;R), φ(ξ) > 0 and φ(−ξ) = −φ(ξ) for ξ > 0, and φ(ξ) is nondecreasing in R;
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(H4) f(x, t) is a real-valued continuous function on G× [0,∞);

(H5) µ is bounded from above, i.e., there exists a constant M3 > 0 such that

0 ≤ µ ≤M3 on ∂G× [0,∞).

Existence and uniqueness of classical solution of the initial-boundary value problem
∂u

∂t
− a∆u+ p(x)u = f(x, t), (x, t) ∈ G× (0,∞),

u(x, 0) = u0(x) (x ∈ G) (initial condition),

(Bi) (i = 1, 2) (boundary condition)

are studied in Itô [5, 6] under some additional hypotheses on p(x) and f(x, t), where a is a positive constant.
There appears to be no known unboundedness results for parabolic equations with forcing terms. The objective

of this paper is to derive sufficient conditions for every classical solution u of the boundary value problems (1), (Bi)
(i = 1, 2) to be unbounded on G × [0,∞). The method used here is an adaptation of that used in Kobayashi and
Yoshida [10].

In Section 2 we reduce unboundedness problem for (1) to that for ordinary differential inequalities of first order.
In Section 3 we derive sufficient conditions for every solution of the first-order ordinary differential inequalities to
be unbounded from below, and we provide unboundedness results for (1) in Section 4. We present conclusion of
this paper in Section 5.

2 Reduction to ordinary differential inequalities

In this section we reduce our multi-dimensional unboundedness problems to one-dimensional problems for ordinary
differential inequalities of first order.

It is known that the first eigenvalue λ1 of the eigenvalue problem

−∆w = λw in G,

w = 0 on ∂G

is positive and the corresponding eigenfunction Φ(x) may be chosen so that Φ(x) > 0 in G (see Courant and
Hilbert [3]).

Theorem 2.1 Every classical solution u of the boundary value problem (1), (B1) is unbounded on G× [0,∞) if for
any constant K̃ > 0, all solutions y(t) of the first-order ordinary differential inequalities

y′ − λ1M1CΦK̃ −M2CΦφ(K̃) ≤ −a(t)Ψ1(t) + F1(t), t > 0, (2)

y′ − λ1M1CΦK̃ −M2CΦφ(K̃) ≤ −
(
−a(t)Ψ1(t) + F1(t)

)
, t > 0 (3)

are not bounded from below, where

CΦ =

∫
G

Φ(x) dx,

Ψ1(t) =

∫
∂G

ψ1
∂Φ(x)

∂ν
dS,

F1(t) =

∫
G

f(x, t)Φ(x) dx.

Proof. Suppose to the contrary that there exists a solution u of the boundary value problem (1), (B1) which is
bounded on G× [0,∞). Then there is a constant K > 0 such that

|u(x, t)| ≤ K, (x, t) ∈ G× [0,∞),

or
−K ≤ u(x, t) ≤ K, (x, t) ∈ G× [0,∞).
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First we consider the case where

−K ≤ u(x, t), (x, t) ∈ G× [0,∞).

We see from the hypothesis (H3) that

φ(u) ≥ φ(−K) = −φ(K)

and hence

p(x, t)φ(u) ≥ −p(x, t)φ(K) ≥ −M2φ(K) (4)

in light of the hypothesis (H2). Combining (1) with (4) yields

∂u

∂t
− a(t)∆u−M2φ(K) ≤ f(x, t), (x, t) ∈ G× (0,∞). (5)

Multiplying (5) by Φ(x) and then integrating over G, we obtain

d

dt

∫
G

uΦ(x) dx− a(t)

∫
G

(∆u)Φ(x) dx−M2φ(K)

∫
G

Φ(x) dx ≤
∫
G

f(x, t)Φ(x) dx, t > 0. (6)

It follows from Green’s formula that∫
G

(∆u)Φ(x) dx =

∫
∂G

[
Φ(x)

∂u

∂ν
− u

∂Φ(x)

∂ν

]
dS +

∫
G

u∆Φ(x) dx

= −
∫
∂G

ψ1
∂Φ(x)

∂ν
dS − λ1

∫
G

uΦ(x) dx

= −Ψ1(t)− λ1U(t), (7)

where U(t) =
∫
G
uΦ(x) dx. Combining (6) with (7), we derive

U ′(t) + λ1a(t)U(t)−M2CΦφ(K) ≤ −a(t)Ψ1(t) + F1(t), t > 0. (8)

We easily check that

U(t) =

∫
G

uΦ(x) dx ≥ −KCΦ, (9)

that is, U(t) is bounded from below. Combining (9) with the hypothesis (H1) yields

λ1a(t)U(t) ≥ −λ1M1CΦK,

and hence we see from (8) that

U ′(t)− λ1M1CΦK −M2CΦφ(K) ≤ −a(t)Ψ1(t) + F1(t), t > 0.

Therefore, we observe that U(t) is a solution of (2) with K̃ = K which is bounded from below. This contradicts
the hypothesis. Next we treat the case where

u(x, t) ≤ K, (x, t) ∈ G× [0,∞).

Letting v := −u, we find that v ≥ −K on G× [0,∞) and

∂v

∂t
− a(t)∆v + p(x, t)φ(v) = −f(x, t), (x, t) ∈ G× (0,∞),

v = −ψ1 on ∂G× (0,∞).

It is easy to see that

V (t) :=

∫
G

vΦ(x) dx ≥ −KCΦ.

Proceeding as in the case where −K ≤ u(x, t) on G× [0,∞), we conclude that V (t) is a solution of (3) with K̃ = K
which is bounded from below. This contradicts the hypothesis. The proof is complete. 2
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Theorem 2.2 Every classical solution u of the boundary value problem (1), (B2) is unbounded on G× [0,∞) if for
any constant K̃ > 0, all solutions y(t) of the first-order ordinary differential inequalities

y′ −M1M3|∂G|K̃ −M2|G|φ(K̃) ≤ a(t)Ψ2(t) + F2(t), t > 0, (10)

y′ −M1M3|∂G|K̃ −M2|G|φ(K̃) ≤ −
(
a(t)Ψ2(t) + F2(t)

)
, t > 0 (11)

are not bounded from below, where

|G| =
∫
G

dx (the volume of G),

|∂G| =
∫
∂G

dS (the surface area of G),

Ψ2(t) =

∫
∂G

ψ2 dS,

F2(t) =

∫
G

f(x, t) dx.

Proof. Suppose that there is a solution u of the boundary value problem (1), (B2) which is bounded on G× [0,∞).
Then there exists a constant K > 0 such that

|u(x, t)| ≤ K on G× [0,∞),

or
−K ≤ u(x, t) ≤ K on G× [0,∞).

First we let
−K ≤ u(x, t) on G× [0,∞).

Arguing as in the proof of Theorem 2.1, we find that the inequality (5) holds. Integrating (5) over G yields

d

dt

∫
G

u dx− a(t)

∫
G

∆u dx−M2φ(K)

∫
G

dx ≤
∫
G

f(x, t) dx, t > 0. (12)

From the divergence theorem and the boundary condition (B2) we see that∫
G

∆u dx =

∫
∂G

∂u

∂ν
dS =

∫
∂G

(−µu+ ψ2)dS ≤M3|∂G|K +Ψ2(t) (13)

in view of ∫
∂G

(−µu)dS ≤
∫
∂G

KµdS ≤M3|∂G|K.

Combining (12) with (13), we obtain

Ũ ′(t)− a(t)M3|∂G|K −M2|G|φ(K) ≤ a(t)Ψ2(t) + F2(t), t > 0

and therefore

Ũ ′(t)−M1M3|∂G|K −M2|G|φ(K) ≤ a(t)Ψ2(t) + F2(t), t > 0 (14)

in light of (H1), where Ũ(t) =
∫
G
u dx. It is readily seen that Ũ(t) ≥ −K|G|. Hence, Ũ(t) is a solution of (10) with

K̃ = K which is bounded from below. This contradicts the hypothesis. The case where u(x, t) ≤ K on G× [0,∞)
can be handled similarly, and we conclude that (11) with K̃ = K has a solution which is bounded from below. This
is a contradiction, and the proof is complete. 2

3 Ordinary differential inequalities of first order

In this section we deal with the first-order ordinary differential inequality

y′ − γ ≤ g(t), t > 0, (15)

and provide a sufficient condition for every solution y(t) of (15) to be unbounded from below. It is assumed that γ
is a nonnegative constant and g(t) is a real-valued continuous function on [0,∞).
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Theorem 3.1 Every solution y(t) of (15) is not bounded from below if

lim inf
t→∞

1

t

∫ t

0

g(ξ) dξ = −∞. (16)

Proof. Suppose to the contrary that there exists a solution y(t) of (15) which is bounded from below. Let
y(t) ≥ −M on (0,∞) for some constant M > 0. Integrating (15) over (0, t), we obtain

y(t)− y(0)− γt ≤
∫ t

0

g(ξ) dξ,

and therefore

−M − y(0)− γt ≤
∫ t

0

g(ξ) dξ. (17)

Dividing (17) by t yields

−M + y(0)

t
− γ ≤ 1

t

∫ t

0

g(ξ) dξ. (18)

The left hand side of (18) is bounded from below as t → ∞, whereas the right hand side of (18) is not bounded
from below from the hypothesis (16). This contradiction proves the theorem. 2

4 Main results

We present unboundedness results for (1) by combining Theorems 2.1 and 2.2 of Section 2 and Theorem 3.1 of
Section 3.

Theorem 4.1 Every classical solution u of the boundary value problem (1), (B1) is unbounded on G× [0,∞) if

lim inf
t→∞

1

t

∫ t

0

(
−a(ξ)Ψ1(ξ) + F1(ξ)

)
dξ = −∞, (19)

lim sup
t→∞

1

t

∫ t

0

(
−a(ξ)Ψ1(ξ) + F1(ξ)

)
dξ = ∞. (20)

Proof. It follows from Theorem 3.1 and the hypothesis (19) that every solution y of (2) is not bounded from below.
Since

lim inf
t→∞

1

t

∫ t

0

(
−
(
−a(ξ)Ψ1(ξ) + F1(ξ)

))
dξ

= − lim sup
t→∞

1

t

∫ t

0

(
−a(ξ)Ψ1(ξ) + F1(ξ)

)
dξ

= −∞,

we find that every solution y of (3) is not bounded from below. The conclusion follows from Theorem 2.1. 2

Theorem 4.2 Every classical solution u of the boundary value problem (1), (B2) is unbounded on G× [0,∞) if

lim inf
t→∞

1

t

∫ t

0

(
a(ξ)Ψ2(ξ) + F2(ξ)

)
dξ = −∞, (21)

lim sup
t→∞

1

t

∫ t

0

(
a(ξ)Ψ2(ξ) + F2(ξ)

)
dξ = ∞. (22)

Proof. The conclusion follows by combining Theorem 2.2 with Theorem 3.1. 2

Remark. Following the proofs of Theorems 2.1 and 4.1, we conclude that if (19) is satisfied, every classical solution
u of the boundary value problem (1), (B1) is not bounded from below on G × [0,∞), i.e., there exists a sequence
{(xn, tn)} ⊂ G× [0,∞) such that

lim
n→∞

u(xn, tn) = −∞.
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Analogously, if (20) holds, then every classical solution u of the boundary value problem (1), (B1) is not bounded
from above on G× [0,∞), i.e., there exists a sequence {(x̃n, t̃n)} ⊂ G× [0,∞) such that

lim
n→∞

u(x̃n, t̃n) = ∞.

The similar remarks hold in Theorem 4.2.

Corollary 4.3 Every classical solution u of the boundary value problem (1), (B1) is oscillatory in G× (0,∞) and
is neither bounded from below on G× [0,∞) nor bounded from above on G× [0,∞) if (19) and (20) are satisfied.

Proof. If the function ∫ t

0

(
−a(ξ)Ψ1(ξ) + F1(ξ)

)
dξ

is bounded from below on G× [0,∞) as t→ ∞, then the function

1

t

∫ t

0

(
−a(ξ)Ψ1(ξ) + F1(ξ)

)
dξ

is also bounded from below on G× [0,∞) as t→ ∞. Therefore, (19) implies that

lim inf
t→∞

∫ t

0

(
−a(ξ)Ψ1(ξ) + F1(ξ)

)
dξ = −∞.

Analogously, it follows from (20) that

lim sup
t→∞

∫ t

0

(
−a(ξ)Ψ1(ξ) + F1(ξ)

)
dξ = ∞.

From the results of Yoshida [15], [16, Section 2.1] we see that every classical solution u of the boundary value
problem (1), (B1) is oscillatory in G× (0,∞). The conclusion follows from Theorem 4.1 and Remark. 2

Similarly we obtain the analogue of Corollary 4.3.

Corollary 4.4 Every classical solution u of the boundary value problem (1), (B2) is oscillatory in G× (0,∞) and
is neither bounded from below on G× [0,∞) nor bounded from above on G× [0,∞) if (21) and (22) are satisfied.

Example 4.5 We consider the parabolic equation

∂u

∂t
− ∂2u

∂x2
+ u = (sinx)

(
2t2 sin t+ t2 cos t+ 2t sin t

)
, (x, t) ∈ (0, π)× (0,∞), (23)

and the boundary condition

u(0, t) = u(π, t) = 0, t > 0. (24)

Here n = 1, G = (0, π), a(t) = 1, p(x, t) = 1, φ(u) = u, ψ1 = 0 and

f(x, t) = (sinx)
(
2t2 sin t+ t2 cos t+ 2t sin t

)
.

It is easy to see that λ1 = 1, Φ(x) = sinx, Ψ1(t) = 0 and

F1(t) =

∫ π

0

f(x, t) sinx dx =
π

2

(
2t2 sin t+ t2 cos t+ 2t sin t

)
.

A simple computation shows that

1

t

∫ t

0

F1(ξ) dξ =
π

2

(
t sin t− 2t cos t+ 4 sin t+

1

t
(4 cos t− 4)

)
=

√
5

2
πt sin(t+ α) +B(t),



International Journal of Advanced Mathematical Sciences 7

where α is some constant and B(t) is a bounded function as t→ ∞. Therefore we observe that

lim inf
t→∞

1

t

∫ t

0

F1(ξ) dξ = −∞,

lim sup
t→∞

1

t

∫ t

0

F1(ξ) dξ = ∞.

Hence, Theorem 4.1 implies that every solution u of (23), (24) is unbounded on [0, π]× [0,∞). One such solution is

u = (sinx)t2 sin t.

Example 4.6 We consider the problem

∂u

∂t
− ∂2u

∂x2
+ u = (cosx+ 1)

(
t2 cos t− t2 sin t+ 2t cos t

)
+ (cosx)t2 cos t, (x, t) ∈ (0, π)× (0,∞), (25)

−∂u
∂x

(0, t) =
∂u

∂x
(π, t) = 0, t > 0. (26)

Here n = 1, G = (0, π), a(t) = 1, p(x, t) = 1, φ(u) = u, µ = 0, ψ2 = 0 and

f(x, t) = (cosx+ 1)
(
t2 cos t− t2 sin t+ 2t cos t

)
+ (cosx)t2 cos t.

It is easily verified that Ψ2(t) = 0 and

F2(t) =

∫ π

0

f(x, t) dx = π
(
t2 cos t− t2 sin t+ 2t cos t

)
.

An easy calculation shows that

1

t

∫ t

0

F2(ξ) dξ = π

(
t sin t+ t cos t+ 2 cos t− 2

t
sin t

)
=

√
2πt sin

(
t+

π

4

)
+ B̃(t),

where B̃(t) is a bounded function as t→ ∞. Hence we obtain

lim inf
t→∞

1

t

∫ t

0

F2(ξ) dξ = −∞,

lim sup
t→∞

1

t

∫ t

0

F2(ξ) dξ = ∞.

It follows from Theorem 4.2 that every solution u of (25), (26) is unbounded on [0, π]× [0,∞). For example,

u = (cosx+ 1)t2 cos t

is such a solution.

5 Conclusion

We have investigated unboundedness of classical global solutions of semilinear parabolic equations with forcing
terms. We consider two kinds of boundary conditions, i.e., Dirichlet type condition and Robin type condition. It
is shown that every solution of the boundary value problem for a class of semilinear parabolic equations with a
forcing term is unbounded on the cylindrical domain G× [0,∞) under some assumptions on the forcing term and
the boundary function. Our key tool is to reduce the unboundedness of parabolic equations to that of ordinary
differential inequalities. Two examples which illustrate our main theorems are also given.
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