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Abstract

In this paper,closed-form solutions in terms of integral(s) to any second and third order linear non-homogeneous
constant-coefficient ordinary differential equations as well as the second order non-homogeneous Cauchy-Euler
equation, are derived. The method is generalized for nth order linear non-homogeneous constant-coefficient or-
dinary differential equations. A similar method is used to derive closed-form solutions to second order linear
non-homogeneous non- constant coefficient ordinary differential equations. We then demonstrate an application of
the method to recurrence relations of the second order.
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1. Introduction

Existing methods in literature to solve non-homogeneous second order ordinary differential equations involve finding
the solution to the associated homogeneous differential equation first and involve guessing of solutions [1, 2, 3]. In
contrast, in this paper, we derive the solution for any second order linear non-homogeneous constant-coefficient
ordinary differential equation, in terms of certain integral(s), without guessing or finding the solution to the associated
homogeneous differential equation or using initial conditions or having one solution to the equation before hand.
We also use the same method to derive the solution for second order non-homogeneous Cauchy-Euler equations, in
terms of certain integral(s). The solution for any third order linear non-homogeneous constant-coefficient ordinary
differential equation, in terms of certain integral(s) is then derived, using the same method, after which there is a
generalization for any nth order linear non-homogeneous constant-coefficient ordinary differential equation. We then
propose a method for the case when the coefficents are non-constant, by linking the second-order ordinary differential
equation with an associated Riccati differential equation. Once any one solution to the Riccati differential equation
is known, we use it in an integral obtain the closed-form solution to the second-order differential equation. We also
list closed-form solutions to certain types of equations of this form to further illustrate the method. Lastly, the
method is applied to derive closed-form solutions to second order recurrence relations, the discrete counterparts of
differential equations.

Note: Wherever the need be (especially when the algebraic equations yield complex roots), we
must use Euler’s formula viz., eix = cos(x) + ι sin(x).
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2. The second order linear non-homogeneous constant-coefficient dif-
ferential equation

In this section, we consider the differential equation of the form:

y′′ + a1y
′ + a2y = f(x)

where a1 and a2 are constants.

Theorem 2.1. For the differential equation,

y′′ + a1y
′ + a2y = f(x),

the solution is:

y(x) = eax

∫
e(b−a)x

(∫
f(x)e−bx dx

)
dx

where, a and b are roots of the quadratic equation:

t2 + a1t + a2 = 0

Proof. Since a and b are roots of the quadratic equation t2 + a1t + a2 = 0,

a1 = −a− b

a2 = ab

Substituting a1 and a2 in the differential equation, we have:

y′′ − ay′ − by′ + aby = f(x)

On re-arranging the terms, we have,
y′′ − ay′ − b(y′ − ay) = f(x)

Let y′ − ay = z(x). Thus,

y′′ − ay′ = z′(x) =
dz

dx

On substituting z and z′ into the equation, we have:

z′ − bz = f(x)

Multiply both sides by e−bx [’Integrating factor’ ],

e−bxz′ − bze−bx = f(x)e−bx

The left hand side of this equation is nothing but the derivative of ze−bx with respect to x.

d(ze−bx) = f(x)e−bx dx

Integrate both sides of the equation:

ze−bx =
∫

f(x)e−bx dx

z = ebx

∫
f(x)e−bx dx

Since z = y′ − ay,

y′ − ay = ebx

∫
f(x)e−bx dx

Multiply both sides by e−ax [’Integrating factor’ ],

e−axy′ − aye−ax = e(b−a)x

∫
f(x)e−bx dx
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The left hand side of this equation is nothing but the derivative of ye−ax with respect to x.

d(ye−ax) = e(b−a)x

(∫
f(x)e−bx dx

)
dx

Integrate both sides of the equation:

ye−ax =
∫

e(b−a)x

(∫
f(x)e−bx dx

)
dx

Thus,

y = eax

∫
e(b−a)x

(∫
f(x)e−bx dx

)
dx

which ends the proof.

2.1. The case of the homogeneous differential equation

In this sub-section, we consider the known result of the special case when f(x)=0 , i.e. when the differential equation
is homogeneous:

y′′ + a1y
′ + a2y = 0

The solution in this case would be:

y = eax

∫
e(b−a)x

(∫
f(x)e−bx dx

)
dx

y = eax

∫
e(b−a)x

(∫
0 dx

)
dx

y = eax

∫
ce(b−a)x dx

y = eax(
c

b− a
e(b−a)x + c2)

Let c
b−a = c1. Then,

y = eax(c1e
(b−a)x + c2)

y = c1e
bx + c2e

ax

where, c1 and c2 are constants (of integration), and a and b are as defined above.

Thus, y = c1e
bx + c2e

ax is the solution to the second order linear constant-coefficient homogeneous differential
equation which validates Theorem 2.1 when instantiated for the homogeneous equation as a special case and is
consistent with the known result.

Corollary 2.1. The solution to the second-order linear non-homogeneous constant-coefficient differential equation
always contains terms representing the solution to the associated homogeneous differential equation.

Proof. From Theorem 2.1,

y = eax

∫
e(b−a)x

(∫
f(x)e−bx dx

)
dx

is the solution to the second-order linear non-homogeneous constant-coefficient differential equation, where a and b
are as defined above.
Set ∫

f(x)e−bx dx = g(x) + c

where c is the constant of integration. Thus,

y = eax

∫
e(b−a)x (g(x) + c) dx
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y = eax

(∫
e(b−a)xg(x) dx + c1e

(b−a)x + c2

)

where,
c1 =

c

b− a

and c2 is the constant of integration. Thus,

y = eax

(∫
e(b−a)xg(x) dx

)
+ c1e

bx + c2e
ax

Thus, the last two terms of this expression represent the terms from the solution to the associated homogeneous
differential equation as seen above.

3. The second order non-homogeneous cauchy-euler equation

The second-order non-homogeneous Cauchy-Euler equation is of the form:

x2y′′ + kxy′ + my = f(x)

Consider a more general equation of the form:

(a1x + a2)2y′′ + k(a1x + a2)y′ + my = f(x)

where, a1, a2, k and m are constants.

Theorem 3.1. For the differential equation

(a1x + a2)
2
y′′ + k(a1x + a2)y′ + my = f(x),

the solution is of the form

y(x) = (a1x + a2)
a
∫

(a1x + a2)
b−a−1

(∫
f(x)

a1x + a2
dx

)
dx

where a and b are roots of the quadratic equation:

t2 +
k − a1

a1
t +

m

a2
1

= 0

Proof. Set
ln(a1x + a2) = t,

y = g(t)

Thus,

x =
et − a2

a1

y′ =
d(g(t))

dx
=

a1

a1x + a2
g′(t)

y′′ =
d2(g(t))

dx2
=

a2
1

(a1x + a2)2
(g′′(t)− g′(t))

Substitute x,y, y′ and y′′ in the differential equation:

(a1x + a2)
2
y′′ + k(a1x + a2)y′ + my = f(x)

On simplifying, we have:

a2
1(g

′′(t)− g′(t)) + ka1g
′(t) + mg(t) = f

(
et − a2

a1

)
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a2
1g
′′(t) + (ka1 − a2

1)g
′(t) + mg(t) = f

(
et − a2

a1

)

Dividing by a2
1,

g′′(t) +
k − a1

a1
g′(t) +

m

a2
1

g(t) =
1
a2
1

f

(
et − a2

a1

)

Now, this is a second order linear constant-coefficient non-homogeneous
differential equation in g(t).
From Theorem 2.1, the solution to this equation is:

g(t) =
eat

a2
1

∫
e(b−a)t

(∫
f

(
et − a2

a1

)
dt

)
dt

where a and b are roots of the quadratic equation:

t2 +
k − a1

a1
t +

m

a2
1

= 0

Since,
t = ln(a1x + a2)

and
y = g(t),

it follows that,
et = (a1x + a2),

e(b−a)t = (a1x + a2)
(b−a)

dt =
a1

a1x + a2
dx

Thus,

y(x) = (a1x + a2)
a
∫

(a1x + a2)
b−a−1

(∫
f(x)

a1x + a2
dx

)
dx

which completes the proof.

4. The third order linear non-homogeneous constant-coefficient differ-
ential equation

In this section, we consider the differential equation of the form:

y′′′ + a1y
′′ + a2y

′ + a3y = f(x)

Theorem 4.1. For the differential equation

y′′′ + a1y
′′ + a2y

′ + a3y = f(x)

the solution is of the form:

y(x) = ec1x

∫
e(c2−c1)x

(∫
e−(b3+c2)x

(∫
eb3xf(x) dx

)
dx

)
dx

where b1, b2 and b3 are constants satisfying the following algebraic equations:

b1 + b3 = a1

b2 + b1b3 = a2
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b2b3 = a3

and,
c1 and c2 are the roots of the quadratic equation:

t2 + b1t + b2 = 0

Proof. Set
b1 + b3 = a1

b2 + b1b3 = a2

b2b3 = a3

Thus, the differential equation becomes

y′′′ + (b1 + b3)y′′ + (b2 + b1b3)y′ + (b2b3)y = f(x)

Regrouping the terms, we have,

d
dx

(y′′ + b1y
′ + b2y) + b3(y′′ + b1y

′ + b2y) = f(x)

Set
y′′ + b1y

′ + b2y = z(x)

Thus, the differential equation becomes
z′ + b3z = f(x)

Multiply both sides of the equation by eb3x [’Integrating factor’ ],

z′eb3x + zb3e
b3x = f(x)

The left hand side of this equation is the derivative of zeb3x

d(zeb3x) = eb3xf(x) dx

Integrate both sides of the equation:

zeb3x =
∫

eb3xf(x) dx

z = e−b3x

∫
eb3xf(x) dx

Since
z = y′′ + b1y

′ + b2y

The differential equation becomes

y′′ + b1y
′ + b2y = e−b3x

∫
eb3xf(x) dx

Now, this is a second order linear constant-coefficient non-homogeneous
differential equation in y.
From Theorem 2.1, the solution to this equation is:

y(x) = ec1x

∫
e(c2−c1)x

(∫
e−(b3+c2)x

(∫
eb3xf(x) dx

)
dx

)
dx

where c1 and c2 are the roots of the quadratic equation:

t2 + b1t + b2 = 0

.
This completes the proof.
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5. Generalization for the Nth order linear non-homogeneous constant-
coefficient differential equation

In this section, a method to find the solution to any nth order linear constant-coefficient non-homogeneous differential
equations is presented. Consider the nth order differential equation of the form:

y(n) + a1y
(n−1) + a2y

(n−2) + · · · · · ·+ any = f(x)

y(n) +
n∑

i=1

aiy
(n−i) = f(x)

where, y(r) denotes the rth order derivative of y with respect to x.

Now,set
a2 = b2 + b1bn

a3 = b3 + b2bn

...

...

an−1 = bn−1 + bn−2bn

and,
a1 = b1 + bn

an = bn−1bn

where, b1, b2...bn are unknowns to be solved for.

Thus, the differential equation becomes:

y(n) + (b1 + bn)y(n−1) + (b2 + b1bn)y(n−2) + · · · · · · (bn−1 + bn−2bn)y′ + (bn−1bn)y = f(x)

Regrouping the terms, we have,

d
dx

(y(n−1) + b1y
(n−2) · · · bn−1y) + bn(y(n−1) + b1y

(n−2) + b2y
(n−3) · · · bn−1y) = f(x)

d
dx

(
y(n−1) +

n−1∑

i=1

biy
(n−i−1)

)
+ bn

(
y(n−1) +

n−1∑

i=1

biy
(n−i−1)

)
= f(x)

Set

y(n−1) +
n−1∑

i=1

biy
(n−i−1) = z(x)

Thus, the differential equation can be written as:

z′ + bnz = f(x)

Multiply both sides of the equation by ebnx: [”’Integrating Factor’ ]

z′ebnx + bnebnxz = ebnxf(x)

The left hand side of the equation is the derivative of zebnx with
respect to x.

d(zebnx) = ebnxf(x) dx

Integrate both sides of the equation:

zebnx =
∫

ebnxf(x) dx
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z = e−bnx

∫
ebnxf(x) dx

Since,

z = y(n−1) +
n−1∑

i=1

biy
(n−i−1)

The differential equation becomes

y(n−1) +
n−1∑

i=1

biy
(n−i−1) = e−bnx

∫
ebnxf(x) dx

This equation again is a linear constant-coefficient non-homogeneous differential equation of order (n− 1). The
method presented above can be applied repetitively by setting up equations in the pattern shown above, until a
solution is attained in terms of the unknowns found during the repetitions. The motivation of the method is to
simply enable effective regrouping of terms, so as to form a first order linear differential equation, solvable by simply
multiplying both sides of it by the appropriate ’Integrating Factor.’

6. The second order linear non-homogeneous non-constant coefficient
differential equation

In this section, we consider the differential equation of the form:

y′′ + φ(x)y′ + α(x)y = f(x)

Theorem 6.1. For the differential equation

y′′ + φ(x)y′ + α(x)y = f(x)

The solution is of the form

y = e−
∫

P (x) dx

∫
e
∫

(2P (x)−φ(x)) dx

(∫
f(x)e

∫
(φ(x)−P (x)) dx dx

)
dx

where, P(x) satisfies the Riccatti Differential Equation:

P ′(x) = P (x)2 − φ(x)P (x) + α(x)

Proof. Let P (x) and Q(x) be two functions in x.
Consider the second-order differential equation in y:

y′′ + [P (x) + Q(x)]y′ + [P ′(x) + P (x)Q(x)]y = f(x)

On re-grouping terms, we have:

d(y′ + P (x)y)
dx

+ Q(x)[y′ + P (x)y] = f(x)

Given P (x) and Q(x), we can arrive at a solution for y from this equation. Also, we can find and assign P (x)
and Q(x) accordingly so that this equation is equivalent to the original form of the given differential equation.

Thus,
for P (x) and Q(x), the following must hold:

P (x) + Q(x) = φ(x)

and,

P ′(x) + P (x)Q(x) = α(x)
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On eliminating Q(x), we get the following Riccatti Equation in P (x):

P ′(x) = P (x)2 − φ(x)P (x) + α(x)

Now that P (x) and Q(x) satisfy the needed equations, the solution to the equation can be found:

d(y′ + P (x)y)
dx

+ Q(x)[y′ + P (x)y] = f(x)

Multiply both sides of the equation by e
∫

Q(x) dx [’Integrating Factor’ ]:

e
∫

Q(x) dx d(y′ + P (x)y)
dx

+ e
∫

Q(x) dxQ(x)[y′ + P (x)y] = e
∫

Q(x) dxf(x)

The left-hand side of this equation is the derivative of ”e
∫

Q(x) dx)[y′ + P (x)y]” with respect to x.

d(e
∫

Q(x) dx[y′ + P (x)y]) = e
∫

Q(x) dxf(x) dx

On integrating both sides of the equation with respect to x and re-arranging terms, we have:

y′ + P (x)y = e−
∫

Q(x) dx

∫
f(x)e

∫
Q(x) dx dx

Multiply both sides of the equation by e
∫

P (x) dx [’Integrating Factor’ ]:

e
∫

P (x) dxy′ + e
∫

P (x) dxP (x)y = e
∫

(P (x)−Q(x)) dx

∫
f(x)e

∫
Q(x) dx dx

The left-hand side of this equation is the derivative of ye
∫

P (x) dx with respect
to x.

d(ye
∫

P (x) dx) = e
∫

(P (x)−Q(x)) dx

(∫
f(x)e

∫
Q(x) dx dx

)
dx

On integrating both sides of the equation with respect to x and re-arranging terms, we have:

y = e−
∫

P (x) dx

∫
e
∫

(P (x)−Q(x)) dx

(∫
f(x)e

∫
Q(x) dx dx

)
dx

Also,
Q(x) = φ(x)− P (x)

Thus,

y = e−
∫

P (x) dx

∫
e
∫

(2P (x)−φ(x)) dx

(∫
f(x)e

∫
(φ(x)−P (x)) dx dx

)
dx

is the solution. This completes the proof.

6.1. Closed-Form solutions to certain types of second order linear non-homogeneous
non-constant coefficient differential equations

Based on choices of φ(x) and α(x), we consider a few types of second-order linear non-homogeneous non-constant
coefficient differential equations. The scope of the method is not restricted to the types mentioned below; any
equation of the type can be solved as long as we can determine a P (x) i.e. as long as we know any one (particular)
solution to the associated Riccati differential equation. Solutions to certain special cases of the Riccati differential
equation have been obtained in the existing literature (see [1] ,[3]). We use these solutions to obtain closed-form
solutions to certain types of second order linear non-homogeneous non-constant coefficient differential equations. We
must be careful to realise that all cases where the exponent is raised to an integral, have arisen from multiplication
by the ’Integrating Factor’ and hence do not require us to add a constant of integration.
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6.1.1. y′′ + φ(x)y′ + (aφ(x)− a2)y = f(x).

Here α(x) = −a2 + aφ(x).
The associated Riccati equation is P ′(x) = P (x)2 − φ(x)P (x)− a2 + aφ(x).

P (x) = a

satisifies this Riccati differential equation. Thus, the solution is:

y = e−ax

∫
e2ax−∫

φ(x) dx

(∫
f(x)e−ax+

∫
φ(x) dx dx

)
dx

6.1.2. y′′ + φ(x)y′ − φ(x)
x y = f(x).

Here α(x) = −φ(x)
x .

The associated Riccati equation is P ′(x) = P (x)2 − φ(x)P (x)− φ(x)
x .

P (x) = − 1
x

satisifies this Riccati differential equation. Thus, the solution is:

y = x

∫
e−

∫
φ(x) dx

x2

(∫
xf(x)e

∫
φ(x) dx dx

)
dx

6.1.3. y′′ + (anxn−1 − a2x2n)y = f(x).

Here α(x) = anxn−1 − a2x2n and φ(x) = 0.
The associated Riccati equation is P ′(x) = P (x)2 + anxn−1 − a2x2n.

P (x) = axn

satisifies this Riccati differential equation. Thus, the solution is:

y = eβ(x)

∫
e−2β(x)

(∫
f(x)eβ(x) dx

)
dx

where,

β(x) = −axn+1

n + 1
.

6.1.4. y′′ + φ(x)y′ + (anxn−1 − a2x2n + axnφ(x))y = f(x).

Here α(x) = anxn−1 − a2x2n + axnφ(x).
The associated Riccati equation is P ′(x) = P (x)2 − φ(x)P (x) + anxn−1−
a2x2n + axnφ(x).

P (x) = axn

satisifies this Riccati differential equation. Thus, the solution is:

y = eβ(x)

∫
e−(2β(x)+

∫
φ(x) dx)

(∫
f(x)eβ(x)+

∫
φ(x) dx

)
dx

where,

β(x) = −axn+1

n + 1
.
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6.1.5. y′′ +
(
R′(x)−R(x)2

)
y = f(x).

Here α(x) = R′(x)−R(x)2 and φ(x) = 0.
The associated Riccati equation is P ′(x) = P (x)2 + R′(x)−R(x)2.

P (x) = R(x)

satisifies this Riccati differential equation. Thus, the solution is:

y = e−
∫

R(x) dx

∫
e
∫

2R(x) dx

(∫
f(x)e−

∫
R(x) dx dx

)
dx

7. Application to recurrence relations

In this section, we apply a method similar to methods used in previous sections to obtain a closed-form solution to
recurrence relations. In general, most recurrence relations can be solved using methods similar to those described
above for their continuous counterparts, differential equations.

We first obtain a closed-form solution for recurrence relations of the first order and then apply it towards
obtaining a solution to linear non-homogeneous constant-coefficient recurrence relations.

Theorem 7.1. For the recurrence relation,

xn = αxn−1 + f(n)

the solution is

xn = arxn−r +
r−1∑
p=0

apf(n− p)

for any r ∈ N such that 1 ≤ r ≤ n− 1.

Proof. The result is trivial. We have,

xn = axn−1 + f(n) (1)

For n− 1, we have

xn−1 = axn−2 + f(n− 1) (2)

Muliplying both sides of this equation by a, we have

axn−1 = a2xn−2 + af(n− 1)

Similarly for n− 2, we have
xn−2 = axn−3 + f(n− 2)

Muliplying both sides of this equation by a2, we have

a2xn−1 = a3xn−2 + a2f(n− 1) (3)

In general, for n− k, where, k ∈ N such that 1 ≤ k ≤ r, we have

akxn−k = ak+1xn−k−1 + apf(n− k) (4)

On adding equations of the form of (4) for k = 1, 2...r, we have

xn = arxn−r +
r−1∑
p=0

apf(n− p)

This completes the proof. Now, we proceed onto second order relations.
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Theorem. For the recurrence relation,

xn + αxn−1 + βxn−2 = f(n)

where n ≥ 2 , n ∈ N and α and β are constants such that β 6= 0,
the solution is:
for α2 6= 4β i.e. a 6= b,

xn = an−1x1 +
b(x1 − ax0)(an−1 − bn−1)

a− b
+ an

n∑
t=2

(
b

a

)t
[

t∑
p=2

b−pf(p)

]

for α2 = 4β i.e. a = b,

xn = nan−1x1 − (n− 1)anx0 + an
n∑

t=2

[
t∑

p=2

a−pf(p)

]

where, a and b are roots of the quadratic equation :

t2 + αt + β = 0.

Proof. Since a and b are roots of the quadratic equation t2 + αt + β = 0,

α = −a− b

β = ab.

On substituting α and β into the recurrence relation, we have

xn − axn−1 − bxn−1 + abxn−2 = f(n)

On re-arranging the terms, we have

(xn − axn−1)− b(xn−1 − axn−2) = f(n)

Let zn = xn − axn−1. Thus,
zn−1 = xn−1 − axn−2.

On substituting zn and zn−1 into the recurrence relation, we have

zn = bzn−1 + f(n)

Applying Theorem 7.1 when r = n− 1, we have

zn = bn−1z1 +
n−2∑
p=0

bpf(n− p).

With a change of variables by replacing p with n− p, we have

zn = bn−1z1 + bn
n∑

p=2

b−pf(p)

Let

g(n) = bn−1z1 + bn
n∑

p=2

b−pf(p)

Since zn = xn − axn−1, we have
xn = axn−1 = g(n)

xn = axn−1 + g(n)
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Applying Theorem 7.1 when r = n− 1, we have

xn = an−1x1 +
n−2∑
q=0

aqg(n− q)

Substituting for g(n), we have

xn = an−1x1 +
n−2∑
q=0

aq

[
bn−q−1z1 + bn−q

n∑
p=2

b−pf(p)

]

On setting t = n− q, we have

xn = an−1x1 +
n∑

t=2

an−t

[
bt−1z1 + bt

n∑
p=2

b−pf(p)

]

xn = an−1x1 +
n∑

t=2

an−tbt−1z1 + an
n∑

t=2

(
b

a

)t
[

t∑
p=2

b−pf(p)

]

From the definition of z, z1 = x1 − ax0.

If a 6= b, on re-arranging the terms and applying the formula for the sum of a geometric series, we have

xn = an−1x1 +
b(x1 − ax0)(an−1 − bn−1)

a− b
+ an

n∑
t=2

(
b

a

)t
[

t∑
p=2

b−pf(p)

]

Or else if a = b, we have

xn = an−1x1 + an−1(n− 1)(x1 − ax0) + an
n∑

t=2

[
t∑

p=2

a−pf(p)

]

xn = nan−1x1 − (n− 1)anx0 + an
n∑

t=2

[
t∑

p=2

a−pf(p)

]

This completes the proof.

8. Conclusion

Thus closed form solutions for the second order linear constant-coefficent non-homogeneous differential equation,
the third order linear constant-coefficent non-homogeneous differential equation and a more generalised variant
of the second order non-homogeneous Cauchy-Euler equation have been derived.In contrast to exisiting methods
involving usage of ansatz, this method does not require guessing techniques. The method has then been generalized
for the nth order linear constant-coefficent non-homogeneous differential equation. The problem of solving such an
equation is then effecively reduced to solving a system of n algebraic equations, and then evaluating an integral.
It can be observed that such an equation of order n will have a solution comprising an integral iterated n times.
Along similar lines, the solution to the second order linear non-constant-coefficent non-homogeneous differential
equation has been obtained, by associating it with a Riccati differential equation. Then, once we have any one
(particular) solution to the Riccati differential equation, we need only calculate an integral to obtain a solution to
the second order differential equation. The motivation of the method(s) lies in the effective regrouping of terms to
enable reduction of these equations into first order equations, as has been described in detail in each of the sections,
particularly in Section 6. The method is then applied to recurrence relations, first by obtaining a trivial result for
first order relations and then using the result to derive closed-form solutions to second order relations.
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