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Abstract

In this paper we introduce and study the concept of Ss-open sets .also, a study new class of functions called
SScontinuous functions, the relationships between Ss-continuity and other types of continuity are investigated.
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1. Introduction

In 1963, Levine [16], introduced the concept of semi-open set and semi continuity and gave several properties about
these functions. Njastad [18] introduced the concepts of α-sets and Abd-El-Monsef et al [1] defined β-open sets
and β-continuous functions. Khalaf and Ameen in [14], defined the concept of Sc-open sets and in 2012, Khalaf
and Ahmed [15], introduced another type of semi-open sets called Sβ-open sets. Throughout this paper (X, τ) and
(Y, σ) (or simply X and Y ) represents non-empty topological spaces on which no separation axiom are assumed,
unless otherwise mentioned. For a subset A of X, Cl(A) and Int(A) represents the closure and Interior of A respec-
tively. A subset A is said to be preopen [17] (resp., α-open [18], semi-open [16], regular open [21], β-open [1]) set
if A ⊆ IntCl(A) (resp. A ⊆ IntClInt(A), A ⊆ ClInt(A), A = IntCl(A), A ⊆ ClIntCl(A)). The complement of a
preopen (resp., α-open , semi-open , regular open, β-open) set is called pre-closed (resp., α-closed, semi-closed, reg-
ular closed, β-closed) set. The intersection of all semi-closed sets containing A is called the semi-closure [5] of A and
it is denoted by sClA. The semi-interior of a set A is the union of all semi-open sets contained in A and is denoted
by sIntA. A subset A of a topological space (X, τ) is said to be θ-open [23] (resp., θ-semi-open [13], semi-θ-open
[6]) set if for each x ∈ A, there is an open (resp., semi-open, semi-open) set U such that x ∈ U ⊆ Cl(U) ⊆ A (resp.,
x ∈ U ⊆ Cl(U) ⊆ A, x ∈ U ⊆ sCl(U) ⊆ A). For more properties of semi-θ-open sets (see [24]) also. A subset A of a
topological space X is said to be regular-semi-open [4] if there exists a regular-open set U such that U ⊆ A ⊆ ClU
equivalently A is regular-semi-open [22] if and only if A = sIntsClA. A set A is called semi-regular [12], if it
is both semi-open and semi-closed. The family of all regular-semi-open (resp., θ-open, θ-semi-open, semi-θ-open,
semi-regular) sets of X is denoted by RSO(X) (resp., θO(X), θSO(X), SθO(X), SR(X)). The aim of the present
paper is to define a new type of sets, we call it Ss-open set. Since the families SO(X) and PO(X) are incomparable
[17], so the it is obvious that the concept of Ss-open sets incomparable with Sp-open sets but it is strictly weaker
than Sc-open sets and stronger than Sβ-open sets.
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2. Preliminaries

In this section, we recall the following definitions and results:

Lemma 2.1 Let (Y ,τY ) be a subspace of a space (X,τ).

1. If A ∈ SO(X, τ) and A ⊆ Y , then A ∈ SO(Y, τY ).[16]

2. If A ∈ SO(Y, τY ) and Y ∈ SO(X, τ), then A ∈ SO(X, τ).[8]

Lemma 2.2 Let A be a subset of a space X, then the following properties hold.

1. If A ∈ SO(X), then sCl(A) ∈ RSO(X) [22]

2. If A ∈ SO(X), then sCl(A) = sClθ(A). [3]

3. If A is open subset of X, then sCl(A) = IntCl(A).[12]

Lemma 2.3 [9] For any topological space X. If A ∈ αO(X) and B ∈ SO(X), then A ∩B ∈ SO(X).

Definition 2.4 A semi-open subset A of a space X is called Sc-open [14] (resp., Sβ-open [15], Sp-open [20]) set if
for each x ∈ A, there exists a closed set (resp., β-closed, pre-closed set) F such that x ∈ F ⊆ A.

Definition 2.5 A topological space (X, τ) is called:

1. semi-T1 [2], if for every two distinct points x, y in X, there exist two semi-open sets, one containing x but
not y and the other containing y not x.

2. semi-regular [11], if for each x ∈ X and each H ∈ SO(X) containing x, there exists G ∈ SO(X) such that
x ∈ G ⊆ sCl(G) ⊆ H.

Lemma 2.6 [2] A space X is semi-T1 , if and only if, the singleton set {x} is semi closed for any point x ∈ X.

Lemma 2.7 The following properties hold:

1. If a space X is semi-regular, then each SO(X) = SθO(X).

2. If a space X is semi-regular, then sCl(A) = sClθ(A) for each subset A of X.

Proof. It is clear that each semi-θ-open is semi-open. If X is semi-regular space and if G is a non-empty semi-open
set in X, the by Definition 2.5, there exists a semi-open set U such that x ∈ U ⊆ sCl(U) ⊆ G, this implies that G
is semi-θ-open. Therefore, SO(X) = SθO(X).
Part (2). Follows from part (1).

Definition 2.8 A space X is locally indiscrete [9], if every open set is closed.

Lemma 2.9 [9] A space X is locally indiscrete if and only if every semi open set in X is closed.

Definition 2.10 [19] A function f : X → Y is said to be strongly θ-semi-continuous at a point x ∈ X, if for each
open set V containing f(x), there exists a semi-open set U containing x such that f(sCl(U)) ⊆ V .
The function f is said to be strongly θ-semi-continuous on X if it is strongly θ-semi-continuous at every point of
X , we shall denote by f is st.sc on X.

Definition 2.11 [10] A function f : X → Y is said to be semi-continuous (resp., contra-semi-continuous) if the
inverse image of every open set in Y is semi-open (resp., semi-closed) in X.

Theorem 2.12 [2] For any spaces X and Y . If A ⊆ X and B ⊆ Y then,

1. sIntX×Y (A×B) = sIntX(A)× sIntY (B).

2. sClX×Y (A×B) = sClX(A)× sClY (B).
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3. Ss-Open Sets

In this section, we Introduce the concept of Ss-open sets in topological spaces.

Definition 3.1 A semi-open subset A of a space X is called Ss-open if for each x ∈ A, there exists a semi-closed
set F such that x ∈ F ⊆ A.

The family of all Ss-open subsets of a topological space (X, τ) is denoted by SsO(X, τ) or SsO(X).

Proposition 3.2 A subset A of a space X is Ss-open if and only if A = ∪Fγ where A is semi-open set and Fγ

semi-closed set for each γ.

Proof. Obvious.

Remark 3.3 It is clear from the definition that every Ss-open subset of a space X is semi-open, but the converse
is not true in general as it is shown in Example 3.11.

Proposition 3.4 If a space X is semi-T1, then SsO(X) = SO(X).

Proof. Follows from the fact that in a semi-T1 space, every singleton set is semi-closed (Lemma 2.6).

Remark 3.5 Since any union of semi-open sets is semi-open [16], so any union of Ss-open sets in a topological
space (X, τ) is also Ss-open. The intersection of two Ss-open sets need not be Ss-open in general as it is shown by
the following example:

Example 3.6 Consider the intervals [0, 1] and [1, 2] in R with the usual topology. Since R is T1 space and hence
it is semi-T1, so by Proposition 3.4, both the intervals are Ss-open sets and we have [0, 1]∩ [1, 2] = {1} which is not
Ss-open.

Proposition 3.7 Every semi-θ-open subset of a space X is Ss-open.

Proof. Suppose that the subset A of X is semi-θ-open, then clearly it is semi-open and by definition, for each
x ∈ A, there exists a semi-open set U such that x ∈ U ⊆ sClU ⊆ A. Hence, sClU is the semi-closed set containing
x contained in A, so A is Ss-open.

The relation of Ss-open sets to some other types of sets is illustrated in the following remark:

Remark 3.8 If X is any topological space, then the following properties hold:

1. Since every θ-semi-open subset of X is semi-θ-open, so, from Proposition 3.7, we obtain that every θ-semi-open
set is Ss-open.

2. It is obvious that every semi-regular subset of X is Ss-open.

3. It is obvious that every sc-open set is ss-open.

4. Every ss-open set is sβ-open, because every semi open set is β-open.

Although not every open set is an Ss-open set as we can see in Example 3.11 but we have the following results:

Proposition 3.9 Let (X, τ) be a semi regular space, then τ ⊆ SsO(X).

Proof. Let A be any non-empty open subset of X, then for each x ∈ A, there is a semi-open set G such that
x ∈ G ⊆ sCl(G) ⊆ A implies that x ∈ sCl(G) ⊆ A. Hence A is Ss-open.

Proposition 3.10 The following properties hold.

1. If A is a semi-open subset of a space X, then sClA is Ss-open.

2. If A is a semi-closed subset of a space X, then sIntA is Ss-open.

3. sClsIntA is Ss-open subset, for every subset A of X.

4. sIntsClA is Ss-open subset, for every subset A of X.
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5. Every regular semi-open subset of X is Ss-open.

Proof. (1) For any subset A of X, we have sClA = A∪IntClA [2]. Hence sClA is both semi-open and semi-closed,
so it is Ss-open.
The proof of parts (2), (3), (4) and (5) are similar.

We get the following diagram of implications:

θ-open set

²²
δ-open set

²²

// semi-θ-open set

²²

θ-semi-open setoo

²²

open set

²²
semi-open set Ss-open setoo sc-open setoo

The following examples show that the above implications are not reversible.

Example 3.11 Consider X = {a, b, c} with the topology τ = {φ, {a}, {a, b}, {a, c}, X}. Then we have:
SO(X) = {φ, {a}, {a, b}, {a, c}, X}, and hence SC(X) = {φ, {c}, {b}, {b, c}, X}.
So, SsO(X) = {φ,X} implies that the set {a} ∈ SO(X), but {a} /∈ SsO(X).

Example 3.12 Consider X = {a, b, c, d} with the topology τ = {φ, {a}, {b}, {a, b}, {a, b, c}, X}. Then :
SO(X) = {φ, {a}, {b}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}{a, b, c}, {a, b, d}, {b, c, d}{a, c, d}, X}.
Hence, the set {a, d} is an Ss-open set which is not Sc-open.

Example 3.13 Consider X = {a, b, c, d} with the topology τ = {φ, {a}, {c, d}, {a, c, d}, X}. Then we can easily
find the following families of sets:
SO(X) = {φ, {a}, {a, b}, {c, d}, {b, c, d}{a, c, d}, X}, also SC(X) = {φ, {a}, {b}, {a, b}, {c, d}, {b, c, d}, X}.
Hence, the set {a, c, d} is an Ss-open set which is not θ-semi-open set also it is not semi-regular set.

Proposition 3.14 For any space X, sCl(sInt({x})) = {x} if and only if {x} is Ss-open.

proof. Let sCl(sInt({x})) = {x}, this implies that sInt({x} = {x} and so, {x} is both semi-open and semi-closed,
then {x} is semi regular open. Hence, {x} ∈ SsO(X).
Conversely. Let {x} be an Ss-open set in X, then there exists a semi-closed F such that x ∈ F ⊆ {x}, this implies
that x ∈ {x} ⊆ {x}, so, {x} is semi-open and semi-closed. Therefore, sCl(sInt({x})) = {x}.

Proposition 3.15 Let (x, τ) be a topological space. Then {x} ∈ Sso(X) if and only if it is semi-regular.

proof. If {x} is semi-regular, then, by Remark 3.8, {x} ∈ SsO(X).
Conversely. Suppose {x} is SsO(X), then {x} is semi-open and by definition it is semi-closed. Hence, {x} is
semi-regular.

Proposition 3.16 A subset A of a space (X, τ) is Ss-open if and only if for each x ∈ A, there exists an Ss-open
set B such that x ∈ B ⊆ A.

proof. If A is an Ss-open subset in the space (X, τ), then for each x ∈ A, putting A = B, which is Ss-open
containing x such that x ∈ B ⊆ A.
Conversely. Suppose that for each x ∈ A, there exists a Ss-open set B such that x ∈ B ⊆ A. So, A = ∪Bγ where
Bγ ∈ SsO(X) for each γ. Therefore, by Remark 3.5, A is Ss-open.

Proposition 3.17 Let X be a topological space, and A,B ⊆ X. If A ∈ SsO(X) and B is both α-open and
semi-closed, then A ∩B ∈ SsO(X).
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proof. Let A ∈ SsO(X) and B be α-open, then A is semi open set, so by Lemma 2.3, we have A ∩ B ∈ SO(X).
Now let x ∈ A ∩ B, then x ∈ A and therefore, there exists a semi-closed set F such that x ∈ F ⊆ A. Since B is
semi-closed, so F ∩B is semi-closed set. Hence, x ∈ F ∩B ⊆ A ∩B. Thus A ∩B is Ss-open set in X.

Proposition 3.18 Let (Y ,τY ) be an α-open subspace of a space (X,τ). If A ∈ SsO(X, τ) and A ⊆ Y , then
A ∈ SsO(Y, τY ).

proof. Let A ∈ SsO(X, τ), then A ∈ SO(X, τ) and for each x ∈ A, there exists a semi-closed set F in X such that
x ∈ F ⊆ A. Since A ∈ SO(X, τ) and A ⊆ Y , so, by Lemma 2.1, A ∈ SO(Y, τY ). Since F semi-closed set in X, then
X \ F is semi-open and hence, by Lemma 2.3, Y ∩ (X \ F ) is semi-open in X. So, by Lemma 2.1, Y ∩ (X \ F ) is
semi-open in Y . Therefore, F = Y \ (Y ∩X \ F ) is semi-closed set in Y . Hence A ∈ SsO(Y, τY ).

Proposition 3.19 Let Y be a semi-regular set in a space (X,τ). If A ∈ SsO(Y, τY ), then A ∈ SsO(X, τ).

proof. Let A ∈ SsO(Y, τY ), then A ∈ SO(Y, τY ) and for each x ∈ A, there exists a semi-closed set F in Y such that
x ∈ F ⊆ A. Since A ∈ SO(Y, τY ) and Y is semi-regular. So, by Lemma 2.1, A ∈ SO(X, τ). Since F semi-closed
set in Y , then Y \ F is semi-open in Y and also, by Lemma 2.1, Y \ F is semi-open in X. Again Y is semi-regular
in X implies that X \ Y is semi-open. Hence, Y \ F ∪X \ Y =X \ F is semi-open in X. So, F is semi-closed in X.
Therefore, A ∈ SsO(X, τ).

Definition 3.20 Let A be a subset of a topological space (X, τ).

1. The union of all Ss-open sets which are contained in A is called the Ss-interior of A and is denoted by
SsInt(A).

2. The intersection of all Ss-closed sets containing A is called the Ss-closure of A and we denote it by SsCl(A).

3. The Ss-boundary of A is SsCl(A) \ SsInt(A) and is denoted by SsBd(A).

Proposition 3.21 Let A be any subset of a space X. If a point x is in the Ss-interior of A, then there exists a
semi closed set F of X containing x such that F ⊆ A.

proof. Suppose that x ∈ SsInt(A), then there exists a Ss-open set U of X containing x such that U ⊆ A. Since
U is Ss-open set, so there exists a semi closed set F containing x such that F ⊆ U ⊆ A. Hence x ∈ F ⊆ A.

Proposition 3.22 For any subset A of a topological space X. The following statements are true:

1. SsInt(A) is the largest Ss-open set contained in A.

2. A is Ss-open if and only if A = SsInt(A).

3. SsCl(A) is the smallest Ss-Closed set in X containing A.

4. A is Ss-closed set if and only if A = SsCl(A).

Some other properties of Ss-interior of a set A are in the following result:

Theorem 3.23 If A and B are any subsets of a topological space (X, τ), then the following properties hold:

1. if A ⊆ B, then SsInt(A) ⊆ SsInt(B) and SsCl(A) ⊆ SsCl(B).

2. SsInt(A) ∪ SsInt(B) ⊆ SsInt(A ∪B).

3. SsInt(A) ∩ SsInt(B) ⊆ SsInt(A ∩B).

4. SsCl(A) ∪ SsCl(B) ⊆ SsCl(A ∪B).

5. SsCl(A ∩B) ⊆ SsCl(A) ∩ SsCl(B).

proof. Obvious.
In general, SsInt(A)∪SsInt(B) 6= SsInt(A∪B). and SsInt(A)∩SsInt(B) 6= SsInt(A∩B). Also, the equalities

in (4) and (5) does not hold as shown in the following example:
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Example 3.24 Consider the space (X, τ) defined in Example 3.13, then we have the following cases:

1. if A = {a, c} and B = {a, d}, then SsInt(A) = {a}, SsInt(B) = {a}. Hence, SsInt(A) ∪ SsInt(B) = {a}
and SsInt(A ∪B) = SsInt({a, b, c}) = {a, b, c}. It follows that SsInt(A) ∪ SsInt(B) 6= SsInt(A ∪B).

2. If A = {a, b} and B = {b, c, d}, then SsInt(A) = {a, b}, SsInt(B) = {b, c, d}, so SsInt(A) ∩ SsInt(B) = {b}
and SsInt(A ∩B) = SsInt({b}) = φ. It follows that SsInt(A) ∩ SsInt(B) 6= SsInt(A ∩B).

3. If A = {a} and B = {c, d}, then SsCl(A) = F , SsCl(B) = B. Hence, SsCl(A) ∪ SsCl(B) = {a, c, d}, and
SsCl(A ∪B) = SsCl({a, c, d}) = X. It follows that SsCl(A) ∪ SsCl(B) 6= SsCl(A ∪B).

4. If A = {a, c, d} and B = {b, c, d}, then SsCl(A) = X and SsCl(B) = B, so SsCl(A) ∩ SsCl(B) = B, and
SsCl(A ∩B) = SsCl({c, d}) = {c, d}. It follows that SsCl(A ∩B) 6= SsCl(A) ∩ SsCl(B).

Proposition 3.25 Let A be a subset of a topological space X. Then x ∈ SsCl(A) if and only if for any Ss-open
set U containing x, U ∩A 6= φ.

proof. Let x ∈ SsCl(A) and suppose that U ∩ A = φ for some Ss-open set U which contains x. Then (X \ U) is
Ss-closed set and A ⊆ (X \U), thus SsCl(A) ⊆ (X \U). But this implies that x ∈ (X \U), which is contradiction.
Therefore U ∩A 6= φ.
Conversely. Suppose that there exists an Ss-open set containing x with A ∩ U = φ, then A ⊆ X \ U and X \ U is
an Ss-closed with x /∈ X \ U . Hence, x /∈ SsCl(A).

Proposition 3.26 For any subset A of a topological space X. The following statements are true.

1. X \ SsCl(A) = SsInt(X \A).

2. SsCl(A) = X \ SsInt(X \A).

3. X \ SsInt(A) = SsCl(X \A).

4. SsInt(A) = X \ SsCl(X \A).

proof. We only prove (1), and the other parts can be proved similarly. (1) For any point x ∈ X, if x ∈ X\SsCl(A) ⇔
x /∈ SsCl(A) ⇔ for each B ∈ SsO(X) containing x, we have A ∩B = φ ⇔ x ∈ B ⊆ X \A ⇔ x ∈ SsInt(X \A).

Theorem 3.27 If A is a subset of a topological space X. Then Intθ(A) ⊆ sIntθ(A) ⊆ SsInt(A) ⊆ sInt(A) ⊆ A ⊆
sCl(A) ⊆ SsCl(A) ⊆ sClθ(A) ⊆ Clθ(A).

proof. Obvious.

Proposition 3.28 Let A be any subset of a space X. If A ∈ SsO(X), then sClθ(A) ⊆ SsCl(A).

proof. Assume that x /∈ SsCl(A), then there exists an Ss-open set U containing x such that A ∩ U = φ and
A ∩ SsCl(U) = φ since A ∈ SsO(X), but sCl(U) ⊆ SsCl(U) implies that A ∩ sCl(U) = φ and hence x /∈ sClθ(A).

Proposition 3.29 Let (X, τ) be a semi regular space and A be any subset of X. Then, sClθ(A) = SsCl(A) =
sCl(A).

proof. From Theorem 2.6, we have sCl(A) = sClθ(A), so we get that sClθ(A) = SsCl(A) = sCl(A).

4. Ss-Continuous Functions

Definition 4.1 A function f : X → Y is called Ss-continuous at a point x ∈ X, if for each open set V of Y
containing f(x), there exists an Ss-open set U of X containing x such that f(U) ⊆ V .
If f is Ss-continuous at every point x of X, then it is called Ss-continuous.

Proposition 4.2 A function f : X → Y is Ss-continuous if and only if the inverse image of every open set in Y is
an Ss-open in X.
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proof. Let f be Ss-continuous, and V be any open set in Y . If f−1(V ) 6= φ, then there exists x ∈ f−1(V ) which
implies f(x) ∈ V . Since, f is Ss-continuous, there exists an Ss-open set U in X containing x such that f(U) ⊆ V .
This implies that x ∈ U ⊆ f−1(V ). This shows that f−1(V ) is Ss-open.
Conversely, let V be any open set in Y , f(x) ∈ V , then x ∈ f−1(V ). By hypothesis, f−1(V ) is an Ss-open set in X
containing x, thus f(f−1(V )) ⊆ V . Therefore, f is Ss-continuous.

Proposition 4.3 If a function f : X → Y is strongly θ-semi-continuous, then f is Ss-continuous.

proof. Let x ∈ X and V be any open set of Y containing f(x). Since, f is strongly θ-semi-continuous, then, there
exists a semi-open set G in X containing x such that f(sCl(G)) ⊆ V . Hence, by Proposition 3.10(1), sCl(G) is an
Ss-open set. Therefore, f is Ss-continuous.

Corollary 4.4 If a function f : X → Y is strongly θ-continuous, then f is Ss-continuous.

proof. Follows from Remark 3.4 of [19] and Proposition 4.3.

The following example shows that the converse of Corollary 4.4 is not true in general.

Example 4.5 Let X = {a, b, c, d} equipped with the two topologies τ = σ = {φ, {a}, {c, d}, {a, c, d}, X}.
If f : (X, τ) → (X, σ) is the identity function, then f is Ss-continuous, but it is not strongly θ-continuous because
f−1({a, c, d}) = {a, c, d} which is not θ-open.

The proof of the following result follows directly from their definitions.

Corollary 4.6 Every Ss-continuous function is semi-continuous.

proof. Obvious.

Example 4.7 Let X = {a, b, c} with the topology τ = σ = {φ, {a}, {b}, {a, b}, X}. Let f : (X, τ) → (X,σ) be the
identity function. Then, f is semi-continuous, but it is not Ss-continuous, because {a} is an open set in (X, σ) and
f−1({a}) is not Ss-open.

Corollary 4.8 If a function f : X → Y is both semi-continuous and contra-semi-continuous, then it is Ss-
continuous.

proof.Follows from Definition 2.11 and Proposition 4.2.

Remark 4.9 The function f in Example 4.5 is not contra-semi-continuous.

Proposition 4.10 A function f : X → Y is Ss-continuous if and only if f is semi-continuous and for each x ∈ X
and each open set V of Y containing f(x), there exists a semi-closed set G of X containing x such that f(G) ⊆ V .

proof. Let x ∈ X and V be any open set of Y containing f(x). By hypothesis, there exists an Ss-open set U of X
containing x such that f(U) ⊆ V . Since U is Ss-open, then for each x ∈ U , there exists a semi-closed set G of X
such that x ∈ G ⊆ U . Therefore, we have f(G) ⊆ V .
Conversely, let V be any open set of Y . It should be shown that f−1(V ) is Ss-open set in X. Since, f is semi-
continuous, then f−1(V ) is semi-open set in X. Let x ∈ f−1(V ), then f(x) ∈ V . By hypothesis, there exists a
semi-closed set G of X containing x such that f(G) ⊆ V , which implies that x ∈ G ⊆ f−1(V ). Therefore, f−1(V )
is Ss-open in X. Hence, by Proposition 4.2, f is Ss-continuous.

5. Characterizations and Properties

In this section, we give some characterizations and properties of Ss-continuous functions and we start with the
following result.

Proposition 5.1 For a function f : X → Y , the following statements are equivalent:
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1. f is Ss-continuous.

2. f−1(V ) is an Ss-open set in X, for each open set V of Y .

3. f−1(F ) is an Ss-closed set in X, for each closed set F of Y .

4. f(SsCl(A)) ⊆ Cl(f(A)), for each subset A of X.

5. SsCl(f−1(B)) ⊆ f−1(Cl(B)), for each subset B of Y .

6. f−1(Int(B)) ⊆ SsInt(f−1(B)), for each subset B of Y .

7. Int(f(A)) ⊆ f(SsInt(A)), for each subset A of X.

proof. (1) ⇒ (2): Follows from Proposition 4.2.
(2) ⇒ (3): Let F be any closed set of Y . Then, Y \ F is an open set of Y . By (2), f−1(Y \ F ) = X \ f−1(F ) is an
Ss-open set in X and hence f−1(F ) is Ss-closed in X.
(3) ⇒ (4): Let A be any subset of X. Then, f(A) ⊆ Cl(f(A)) and Cl(f(A)) is a closed set in Y . By (3), we have
f−1(Cl(f(A))) is Ss-closed in X. Therefore, SsCl(A) ⊆ f−1(Cl(f(A))). Hence, f(SsCl(A)) ⊆ Cl(f(A)).
(4) ⇒ (5): Let B be any subset of Y , so f−1(B) is a subset of X. By (4), we have f(SsCl(f−1(B))) ⊆
Cl(f(f−1(B))) ⊆ Cl(B). Hence SsCl(f−1(B)) ⊆ f−1(Cl(B)).
(5) ⇔ (6): Let B be any subset of Y . Then apply (5) to Y \B, we obtain SsCl(f−1(Y \B)) ⊆ f−1(Cl(Y \B)) ⇔
SsCl(X \ f−1(B)) ⊆ f−1(Y \ Int(B)) ⇔ X \SsInt(f−1(B)) ⊆ X \ f−1(Int(B)) ⇔ f−1(Int(B)) ⊆ SsInt(f−1(B)).
Therefore, f−1(Int(B)) ⊆ SsInt(f−1(B)).
(6) ⇒ (7): Let A be any subset of X. Then, f(A) is a subset of Y . By (6), we have f−1(Int(f(A))) ⊆
SsInt(f−1(f(A))) ⊆ SsInt(A). Therefore, Int(f(A)) ⊆ f(SsInt(A)).
(7) ⇒ (1): Let x ∈ X and let V be any open set of Y containing f(x). Then, x ∈ f−1(V ) and f−1(V ) is a subset
of X. By (7), we have Int(f(f−1(V ))) ⊆ f(SsInt(f−1(V ))). Hence, Int(V ) ⊆ f(SsInt(f−1(V ))). Since, V is an
open set, so V ⊆ f(SsInt(f−1(V ))) implies that f−1(V ) ⊆ SsInt(f−1(V )). Therefore, f−1(V ) is an Ss-open set in
X which contains x and clearly f(f−1(V )) ⊆ V . Hence, f is Ss-continuous.

Proposition 5.2 For a function f : X → Y , the following statements are equivalent:

1. f is Ss-continuous.

2. SsCl(f−1(V )) ⊆ f−1(Clθ(V )), for each open set V of Y .

3. f−1(Intθ(V )) ⊆ SsInt(f−1(V )), for each closed V of Y .

proof. (1) ⇒ (2). Let V be any open set in Y . Suppose that x /∈ f−1(Clθ(V )), then f(x) /∈ Clθ(V ) and there
exists an open set G containing f(x), such that Cl(G)∩ V = φ implies G∩ V = φ. Since, f is Ss-continuous, there
exists a Ss-open set U containing x such that f(U) ⊆ G. Therefore, we have f(U) ∩ V = φ and U ∩ f−1(V ) = φ.
This shows that x /∈ SsCl(f−1(V )). Thus, we obtain SsCl(f−1(V )) ⊆ f−1(Clθ(V )).
(2) ⇒ (3). It is quite similar to part (5) ⇒ (6) in Proposition 5.1.
(3) ⇒ (1). From the Proposition 5.1 (6) and the fact that Int(V ) = Intθ(V ) for each closed set V .

Proposition 5.3 A f : X → Y is Ss-continuous if and only if SsBd(f−1(B)) ⊆ f−1(Bd(B)), for each subset B in
Y .

proof. Let B be any subset of Y , then we have f−1(Bd(B)) = f−1(Cl(B) \ Int(B)) = f−1(Cl(B)) \ f−1(Int(B)).
Hence, by Proposition 5.1 (5) and (6), we have f−1(Cl(B)) \ f−1(Int(B)) ⊇ f−1(SsCl(B) \ SsInt(B)). Hence,
SsBd(f−1(B)) ⊆ f−1(Bd(B)).

Conversely, let V be any open set in Y and F = Y \ V . Then, by hypothesis, we have SsBd(f−1(F )) ⊆
f−1(Bd(F )) ⊆ f−1(Cl(F )) = f−1(F ) and hence SsCl(f−1(F )) = SsInt(f−1(F )) ∪ SsBd(f−1(F )) ⊆ f−1(F ).
Thus, f−1(F ) is Ss-closed and hence f−1(V ) is Ss-open in X.

Theorem 5.4 Let f : X → Y be a function. Let B be any basis for τ in Y . Then, f is Ss-continuous if and only
if for each B ∈ B, f−1(B) is a Ss-open subset of X
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proof. Necessity. Suppose that f is Ss-continuous. Then, since each B ∈ B is an open subset of Y . Therefore, by
Theorem 5.1, f−1(B) is a Ss-open subset of X.
Sufficiency. Let V be any open subset of Y . Then, V = ∪{Bi : i ∈ I} where every Bi is a member of B and I is a
suitable index set. It follows that f−1(V ) = f−1(∪{Bi : i ∈ I}) = ∪f−1({Bi : i ∈ I}). Since, f−1(Bi) is a Ss-open
subset of X for each i ∈ I. Hence, f−1(V ) is the union of a family of Ss-open sets of X and hence is Ss-open set
of X. Therefore, by Proposition 5.1, f is Ss-continuous.

Proposition 5.5 Let f : X → Y be a Ss-continuous function. If Y is any subset of a topological space Z, then
f : X → Z is Ss-continuous.

proof. Let x ∈ X and V be any open set of Z containing f(x), then V ∩ Y is open in Y . But, f(x) ∈ Y for each
x ∈ X, then f(x) ∈ V ∩ Y . Since, f : X → Y is Ss-continuous, then there exists a Ss-open set U containing x such
that f(U) ⊆ V ∩ Y ⊆ V . Therefore, f : X → Z is Ss-continuous.

Proposition 5.6 Let f : X → Y be a function and X is locally indiscrete space. Then, f is Ss-continuous if and
only if f is semi-continuous .

proof. Follows from Lemma 2.9.

Proposition 5.7 Let f : X → Y be a function and X is semi-T1 space. Then, f is Ss-continuous if and only if f
is semi-continuous .

proof. Follows from Proposition 3.4.

Proposition 5.8 Let f : X → Y be an Ss-continuous function. If A is α-open and semi-closed subset of X, then
f |A : A → Y is Ss-continuous in the subspace A.

proof. Let V be any open set of Y . Since, f is Ss-continuous. Then, by Proposition 4.2, f−1(V ) is Ss-open set in
X. Since, A is α-open and semi-closed subset of X. By Proposition 3.17, (f |A)−1(V ) = f−1(V ) ∩A is an Ss-open
subset of A. This shows that f |A : A → Y is Ss-continuous.

Proposition 5.9 A function f : X → Y is Ss-continuous, if for each x ∈ X, there exists a semi-regular set A of X
containing x such that f |A : A → Y is Ss-continuous.

proof. Let x ∈ X, then by hypothesis, there exists a semi-regular set A containing x such that f |A : A → Y is
Ss-continuous. Let V be any open set of Y containing f(x), there exists an Ss-open set U in A containing x such
that (f |A)(U) ⊆ V . Since, A is semi-regular set, by Remark 3.8, U is Ss-open set in X and hence f(U) ⊆ V . This
shows that f is Ss-continuous.

Proposition 5.10 Let f : X1 → Y and g : X2 → Y be two Ss-continuous functions. If Y is Hausdorff, then the
set E = {(x1, x2) ∈ X1 ×X2 : f(x1) = g(x2)} is Ss-closed in the product space X1 ×X2.

proof. Let (x1, x2) /∈ E. Then, f(x1) 6= g(x2). Since, Y is Hausdorff, there exist open sets V1 and V2 of Y such
that f(x1) ⊆ V1, g(x2) ⊆ V2 and V1 ∩ V2 = φ. Since, f and g are Ss-continuous, then there exist Ss-open sets
U1 and U2 of X1 and X2 containing x1 and x2 such that f(U1) ⊆ (V1) and g(U2) ⊆ (V2), respectively. Put U =
U1 ×U2, then (x1, x2) ∈ U and by Proposition 2.12, U is an Ss-open set in X1 ×X2 and U ∩E = φ. Therefore, we
obtain (x1, x2) /∈ SsCl(E). Hence, E is Ss-closed in the product space X1 ×X2.

Proposition 5.11 Let f : X → Y and g : Y → Z be two functions. If f is Ss-continuous and g is continuous.
Then, the composition function g ◦ f : X → Z is Ss-continuous.

proof. Let V be any open subset of Z. Since, g is continuous, g−1(V ) is open subset of Y . Since, f is Ss-continuous,
then by Proposition 4.2, (g ◦ f)−1(V ) = f−1(g−1(V )) is Ss-open subset in X. Therefore, g ◦ f is Ss-continuous.

Proposition 5.12 Let f : (X, τ) → (Y, ρ) be a surjection function such that f(U) is Ss-open in Y , for any Ss-open
set U in X and let g : (Y, ρ) → (Z, σ) be any function. If g ◦ f is Ss-continuous then g is Ss-continuous.

proof. Let y ∈ Y . Since, f is surjection, there exists x ∈ X such that f(x) = y. Let V ∈ σ with g(y) ∈ V ,
then (g ◦ f)(x) ∈ V . Since, g ◦ f is Ss-continuous, there exists an Ss-open set U in X containing x such that
(g ◦ f)(U) ⊆ V . By assumption H = f(U) is an Ss-open set in Y and contains f(x) = y. Thus, g(H) ⊆ V . Hence,
g is Ss-continuous.
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Proposition 5.13 If fi : Xi → Yi is Ss-continuous functions for i = 1, 2. Let f : X1×X2 → Y1×Y2 be a function
defined as follows: f(x1, x2) = (f1(x1), f2(x2)). Then, f is Ss-continuous.

proof. Let R1 ×R2 ⊆ Y1 × Y2, where Ri is open set in Yi for i = 1, 2. Then, f−1(R1 ×R2) = f−1
1 (R1)× f−1

2 (R2).
Since, fi is Ss-continuous for i = 1, 2. By Proposition 4.2, f−1(R1 ×R2) is Ss-open set in X1 ×X2.

Proposition 5.14 Let f : X → Y be any function. If the function g : X → X × Y , defined by g(x) = (x, f(x)), is
an Ss-continuous function, then f is Ss-continuous.

proof. Let H be an open subset of Y , then X × H is an open subset of X × Y . Since g is Ss-continuous, then
g−1(X ×H) = f−1(H) is an Ss-open subset of X. Hence f is Ss-continuous.
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