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Abstract

G-atomic decompositions for Banach spaces with respect to a model space of sequences have been introduced
and studied as a generalization of atomic decompositions. Examples and counter example have been provided
to show its existence. It has been proved that an associated Banach space for G-atomic decomposition always
has a complemented subspace. The notion of a representation system is introduced and exhibits its relation with
G-atomic decomposition. Also It has been observed that G-atomic decompositions are exactly compressions of
Schauder decompositions for a larger Banach space. We give a characterization for finite G-atomic decomposition
in terms of finite-dimensional expansion of identity.
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1. Introduction

Frames are main tools for use in signal and image processing, compression, sampling theory, optics, filter banks,
signal detection etc. In order to have many more uses of frames, several notions generalizing the concept of frames
have been introduced and studied, namely; Banach frames [13], pseudo frames [15], oblique frames [7], frames of
subspaces (fusion frames) [4, 5], G-frames [20] etc.

Coifman and Weiss [9] introduced a concept, similar to that of frames, called atomic decompositions for func-
tion spaces. Later, the concept of frames in Hilbert spaces was extended to Banach spaces by Feichtinger and
Grochenig [11] who introduced the concept of atomic decompositions in Banach spaces. This concept was further
generalized by Grochenig [13] who introduced the notion of Banach frames for Banach spaces. Frazier and Jawerth
[12] had constructed wavelet atomic decompositions for Besov spaces, which they called “φ-transform”. Feichtinger
[10] constructed Gabor atomic decomposition for the modulation spaces. Christensen [6] in 1996, studied atomic
decomposition via group representation, while Christensen and Heil [8], in 1997, discussed stability of atomic decom-
positions for Banach spaces under small perturbations. Casazza, Han and Larson [3] relate an atomic decomposition
with several forms of the approximation property in Banach space theory and with Banach frames. Banach frames
and atomic decompositions were further studied in [1, 2].

In this article we generalize the classical construction of Pelczynski [16]. In fact, we introduce the notion of
G-atomic decomposition for Banach spaces. It has been proved that an associated Banach space, for G-atomic
decomposition always has a complemented subspace. We define representation system and exhibits its relation with
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G-atomic decomposition. Also, it has been observed that G-atomic decompositions are exactly compressions of
Schauder decompositions for a larger Banach space. We give a characterization for finite G-atomic decomposition
in terms of finite-dimensional expansion of identity.

2. Preliminaries

Throughout this paper, E will denote a Banach space over the scalar field K (R or C), E∗ the conjugate space of
E, and L(E, F ) will denote the Banach space of all continuous linear operators from E into F .

A sequence {xn} in E is said to be complete if [xn] = E and a sequence {fn} in E∗ is said to be total over E if
{x ∈ E : fn(x) = 0, n ∈ N} = {0}. In the case where F = E, we write L(E) = L(E, E). A sequence {vn} ⊂ L(E)
is said to be total on E if vn(x) = 0, for all n ∈ N, implies x = 0.

By a Banach sequence space (often called a BK-space) we mean a Banach space of scalar sequences, indexed by
N, for which the coordinate functionals are continuous. We say that the space is a Schauder sequence space if, in
addition, the unit vectors (ei) given by (ei)j = δij(where δij is the Kronecker delta) form a basis for it.

Definition 2.1 ([11]). Let E be a Banach space and let Ed be an associated Banach space of scalar-valued sequences
indexed by N. Let {xn} be a sequence in E and let {fn} be a sequence in E∗. Then, the pair ({fn}, {xn}) is called
an atomic decomposition for E with respect to Ed, if

(a) {fn(x)} ∈ Ed, for all x ∈ E

(b) there exist constants A,B with 0 < A ≤ B < ∞ such that

A‖x‖E ≤ ‖{fn(x)}‖Ed
≤ B‖x‖E , x ∈ E

(c) x =
∞∑

n=1
fn(x)xn, for all x ∈ E.

The positive constants A, B are called atomic bounds for the atomic decomposition ({fn}, {xn}).
Definition 2.2 ([18]). A sequence {Gn} of subspaces of E is a decomposition of E if for each x ∈ E there exists a
unique sequence {xn} in E such that

x =
∞∑

n=1

xn, xn ∈ Gn for each n,

the convergence being in the norm topology of E. Uniqueness implies the existence of projections (not necessarily
continuous) vn from E onto Gn such that vivj = δijvj, where δij is the Kronecker delta. If each vn is continuous,
then decomposition is called a Schauder decomposition.

Let ({fn}, {xn}) be an atomic decomposition for E with respect to a Banach sequence space Z. There is a
natural procedure that allows us to replace Z by a Schauder sequence space so that ({fn}, {xn}) is also, an atomic
decomposition of E with respect to Ed (see [3, Theorem 2.6]).

3. Main results

The theory of spaces of sequences of scalars admits a natural generalization to a vector sequence spaces. If Φ = {Gn}
is a sequence of Banach spaces, a sequence space XΦ associated with {Gn} is a linear subspace of

∞∏
n=1

Gn (the

collection of all sequences {yn} with yn ∈ Gn, n = 1, 2, . . . , endowed with product topology). The coordinate
operators Pn : XΦ → Gn are defined by Pn({yi}) = yn, n = 1, 2, . . . . Then XΦ is called a generalized BK-space
induced by {Gn} if XΦ is a Banach space and Pn is a continuous operator on XΦ, for every n ∈ N. The scalar
BK-spaces containing all unit vectors en are generalized by the spaces XΦ containing all canonical subspaces

Fn = {0} × . . .× {0} × Gn
↓

nth place

× {0} × . . . . (Gn 6= {0}, n = 1, 2 . . .).

These Fn’s are closed linear subspaces of XΦ. We refer to the space XΦ as a model space.
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The following is the example of such type of a model space.
Let Φ = {Gn} be a sequence of closed linear subspaces of a Banach space E. Consider the linear space XΦ

of the system Φ, that is, the space of all element sequences y = {yn}∞n=1 for which the series
∞∑

n=1
yn is convergent

equipped with the norm

‖y‖XΦ = sup
n≥1

∥∥∥∥
n∑

k=1

yk

∥∥∥∥
E

, yn ∈ Gn (n = 1, 2 . . .).

The space XΦ is complete with respect to this norm and the system {Fn} defined by above is a Schauder
decomposition of XΦ. Clearly, any model space XΦ can be obtained by the method described above, indeed, if X
is a model space of the sequence of subspaces Φ = {Fn} then XΦ = X.

We begin with the following generalization of Atomic decomposition.

Definition 3.1. Let Φ = {Gn} be a sequence of non-trivial subspaces of a Banach space E and {vn : vn ∈ L(E,Gn)}
be a sequence of linear operators (not necessarily projections). Let XΦ be a model space associated with E. Then
we say ({Gn}, {vn}) is G-atomic decomposition for E with respect to XΦ if

(a) {vn(x)} ∈ XΦ, for all x ∈ E

(b) there exist constants A, B with 0 < A ≤ B < ∞ such that

A‖x‖E ≤ ‖{vn(x)}‖XΦ ≤ B‖x‖E , x ∈ E

(c) x =
∞∑

n=1
vn(x), for all x ∈ E.

The positive constants A and B, respectively, are called lower and upper atomic bounds for the G-atomic decompo-
sition ({Gn}, {vn}).

Next, we have following lemma on the line of [19, p. 189], which used in the subsequent work.

Lemma 3.2. Let {Gn} be a sequence of subspaces of E and {vn} ⊂ L(E,Gn) be a sequence of operators, ∀ n ∈ N.
If {vn} is total over E, then X = {{vn(x)} : x ∈ E} is a Banach space with norm ‖{vn(x)}‖X = ‖x‖E , x ∈ E.

Regarding existence of G-atomic decompositions, we have the following examples. The modified sequence {Gn}
used below was constructed in [14].

Example 3.3. Consider the Banach space

E = `∞(χ) = {{xn} : xn ∈ χ; sup
1≤n<∞

‖xn‖χ < ∞}

equipped with the norm ‖{xn}‖E = sup
1≤n<∞

‖xn‖χ, {xn} ∈ E, where (χ, ‖ · ‖) is a Banach space.

Define a sequence {Gn} of subspaces of E by

G2n−1 = {δx
2n−1 + 2nδx

2n : x ∈ χ}
G2n = {δx

2n : x ∈ χ}
where

δx
n = (0, 0, . . . , 0, x

↓
nth place

, 0, . . .) for all n ∈ N and x ∈ χ.

Define operators vn : `∞(χ) → `∞(χ) by

v2n−1(x) = δ
x2n−1
2n−1 + 2nδ

x2n−1
2n

v2n(x) = 2nδ
( 1
2n x2n−x2n−1)

2n for all x = {xn} ∈ E and n ∈ N.

Then, by Lemma 3.2, there exists an associated model space X = {vn(x) : x ∈ E} with norm given by

‖{vn(x)}‖X = ‖x‖E , x ∈ E.
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Also
∞∑

n=1

vn(x) = x, x ∈ E.

Therefore ({Gn}, {vn}) is G-atomic decomposition of E with respect to model space X.

Example 3.4. Let E = c0 and {en} be the unit vector basis in c0. Write

Gn = [xn] and vn(x) = fn(x)xn, n ∈ N,

where {xn} ⊂ E and {fn} ⊂ E∗ are given by

x2n−1 = 21−ne2n−1 − e2n, x2n = e2n (n ∈ N)

f2n−1 = 2n−1h2n−1, f2n = 2n−1h2n−1 + h2n (n ∈ N),

{hn} being the sequence of coordinate functionals to {en}. Then, it can be easily prove that there exist an associated
model space X = {vn(x) : x ∈ E}, such that ({Gn}, {vn}) is G-atomic decomposition for E with respect to X.

Example 3.5. Let E be a Banach space defined as

E = `2(χ) =
{
{xn} : xn ∈ χ;

∞∑
n=1

‖xn‖2χ < ∞
}

,

where (χ, ‖ · ‖) is a Banach space, equipped with the norm given by

‖{xn}‖E =
( ∞∑

n=1

‖xn‖2χ
) 1

2

.

Define for n ∈ N, Gn = {δx
1 + δx

n+1 : x ∈ χ} and vn(x) = δ
xn+1
1 + δ

xn+1
n+1 , x = {xn} ∈ E, where δx

n =
(0, 0, . . . , 0, x

↓
nth place

, 0, . . .) for all n ∈ N and x ∈ χ. But, since for any 0 6= x ∈ χ, δx
1 = (x, 0, 0, . . .) ∈ E is such

that vn(δx
1 ) = 0, for all n ∈ N, there exist no associated model space X such that ({Gn}, {vn}) is a G-atomic

decomposition for E with respect to X.

Remark 3.6. Any Banach space E admits the trivial G-atomic decomposition {Gn}, where G1 = E and Gn 6= {0}
(n = 2, 3, . . .) are arbitrary with operators v1 = IE, vn = 0 (n = 2, 3, . . .).

Theorem 3.7. If ({Gn}, {vn}) is a G-atomic decomposition for E with respect to XΦ, then there exist a comple-
mented coefficient subspace G of XΦ and an isomorphism T from E into XΦ such that XΦ = T (E)⊕G.

Proof. Let ({Gn}, {vn}) be a G-atomic decomposition of E with respect to XΦ

where

XΦ =
{
{yn} ⊂ E

∣∣∣∣
∞∑

n=1

yn converges; yn ∈ Gn (n = 1, 2, . . .)
}

(1)

equipped with norm ‖{yn}‖XΦ = sup
1≤n<∞

∥∥∥∥
n∑

i=1

yi

∥∥∥∥.

Then the mapping T : E → XΦ defined by

T (x) = {vn(x)}, x ∈ E

is an isomorphism from E into XΦ. Since
∞∑

n=1
vn(x) converges to x by (1) and

‖x‖E =
∥∥∥∥
∞∑

i=1

vi(x)
∥∥∥∥ ≤ sup

1≤n<∞

∥∥∥∥
n∑

i=1

vi(x)
∥∥∥∥

= ‖{vn(x)}‖XΦ ≤ B‖x‖E , x ∈ E,
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where

B = sup
1≤n<∞

‖Sn‖ < ∞ and Sn(x) =
n∑

i=1

vi(x).

Now, define S : XΦ → E by

S({xn}) =
∞∑

i=1

xi, {xn} ∈ XΦ, n ∈ N.

Then S is a bounded linear operator from XΦ to E. Put G = kerS. Then

G =
{
{xn} ⊂ E

∣∣∣∣ xn ∈ Gn(n = 1, 2, . . .),
∞∑

i=1

xi = 0
}

,

is a closed subspace of XΦ.
Furthermore, if {vn(x)} ∈ G for some x ∈ E, then

0 = S({vn(x)}) =
∞∑

n=1

vn(x) = x.

So

T (E) ∩G = {0}.

Now, let {xn} ∈ XΦ be arbitrary such that x =
∞∑

i=1

xi. Then {vn(x)} ∈ T (E) such that

∞∑

i=1

(xi − vi(x)) =
∞∑

i=1

xi −
∞∑

i=1

vi(x)

= x− x = 0.

Therefore {xn − vn(x)} ∈ G such that

{xn} = {vn(x)}+ {x(0)
n }, where {vn(x)} ∈ T (E) and {x(0)

n } = {xn − vn(x)} ∈ G.

Hence, we have XΦ = T (E)⊕G.

Definition 3.8. A system Φ = {Gn} of closed linear subspaces of a Banach space E, with Gn 6= {0} (n = 1, 2, . . .)
is called a representation system of E with respect to model space XΦ if for every x ∈ E, there exists a sequence

{xn} ⊂ E with xn ∈ Gn (n = 1, 2, . . .) such that x =
∞∑

n=1
xn and G =

{
{xn} ⊂ E

∣∣∣∣
∞∑

n=1
xn = 0

}
is a complemented

coefficient subspace of XΦ.

Theorem 3.9. Let E be a Banach space and XΦ be an associated Banach space indexed by N. Then Φ = {Gn} is
a representation system if and only if ({Gn}, {vn}) is a G-atomic decomposition with respect to XΦ.

Proof. Necessity. Let Φ = {Gn} be a representation system of E then for {xn} ⊂ E with xn ∈ Gn, we have

x =
∞∑

n=1
xn, n ∈ N. Let G =

{
{xn} ⊂ E

∣∣∣∣
∞∑

n=1
xn = 0

}
be a complemented coefficient subspace of XΦ then

XΦ = G⊕ F and F is complemented to G. Define S : XΦ → E by

S({xn}) =
∞∑

n=1

xn, {xn} ∈ XΦ, n ∈ N.

As in Theorem 3.7, T is an isomorphism from E into XΦ, then S|F is an isomorphism from F onto E. Indeed,

if S({xn}) = 0 for some {xn} ∈ F , then
∞∑

n=1
xn = 0. Hence {xn} ∈ G ∩ F = {0}, which proves that S|F is one
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to one. Also, if y ∈ E then, since Φ is a representation system, there exists a sequence {yn} ∈ XΦ such that

y =
∞∑

n=1
yn = S({yn}), write

{yn} = {x(0)
n }+ {xn}, where {x(0)

n } ∈ G, {xn} ∈ F.

Then y = S({x(0)
n }) + S({xn}) = S({xn}), which proves that S|F is onto.

Now let x ∈ E be an arbitrary element and let {vn(x)} = (S|F )−1(x) ∈ F then

{xn} = {vn(x)}+ {x(0)
n }, {x(0)

n } ∈ G.

So, we have

S({xn}) = S({vn(x)}).

Therefore

x = S({vn(x)}) =
∞∑

n=1

vn(x).

Since, F ⊂ XΦ, we have vn(x) ∈ Gn, x ∈ E, n ∈ N.

x = S({vn(x)}) =
∞∑

n=1

vn(x), x ∈ E,

and each vn is linear on E and satisfies

‖vn(x)‖ ≤ 2 sup
1≤k<∞

∥∥∥∥
k∑

i=1

vi(x)
∥∥∥∥

= 2‖{vn(x)}‖
≤ 2‖(S|F )−1‖‖x‖ (x ∈ E,n = 1, 2, . . .).

Also, by the the principle of uniform boundedness,

‖x‖E =
∥∥∥∥
∞∑

n=1

vn(x)
∥∥∥∥

≤ sup
1≤n<∞

∥∥∥∥
n∑

i=1

vi(x)
∥∥∥∥

= ‖{vn(x)}‖XΦ ≤ B‖x‖E ,

where B = sup
1≤n<∞

‖Sn‖ < ∞ and Sn(x) =
n∑

i=1

vi(x). Therefore ({Gn}, {vn}) is a G-atomic decomposition of E with

respect to XΦ.
Sufficiency, follows with the argument of the proof of Theorem 3.7.

In the following result, we show that an G-atomic decomposition for a Banach space produces another G-atomic
decomposition for the space.

Theorem 3.10. If ({Gn}, {vn}) is a G-atomic decomposition for E with respect to XΦ, then there exists a projection
P of XΦ onto T (E) along G such that ({T−1P (Fn)}, {vn}) is an G-atomic decomposition for E with respect to XΦ,
where {Fn} is the Schauder decomposition of XΦ.

Proof. Let P be a projection of XΦ onto T (E) along G. Then

P ({xn}) =
{

vn

( ∞∑

i=1

xi

)}
, {xn} ∈ XΦ. (2)
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Since for every {vn(x)} ∈ T (E), we have

P ({vn(x)}) = {vn(x)} =
{

vn

( ∞∑

i=1

vi(x)
)}

and since for every {xn} ∈ G we have

P ({xn}) = 0 = {vn(0)} =
{

vn

( ∞∑

i=1

xi

)}
.

By (2) we have, in particular, for any {δnkxn} ∈ Fk, k = 1, 2, . . .

P ({δnkxn}) =
{

vn

( ∞∑

i=1

δikxi

)}
= {vn(xk)} = T (xk)

where

δik =

{
1 if i = k

0 if i 6= k.

Since T is invertible, then xk = T−1(P ({δnkxn})), xk ∈ Gk, k = 1, 2, . . .. Therefore Gk = T−1P (Fk), k = 1, 2, . . ..
Hence ({T−1P (Fn)}, {vn}) is a G-atomic decomposition for E with respect to model space XΦ.

In next theorem we want to classify G-atomic decomposition in terms of bases of subspaces (Schauder decom-
position) for Banach space.

Theorem 3.11. If D is any Banach space with Schauder decomposition {Fn} and an isomorphism T from E into
D and a projection P from D onto T (E) such that Gn = T−1P (Fn). Then, there exists an associated sequence of
operators {vn} such that ({Gn}, {vn}) is a G-atomic decomposition for E.

Proof. Since {Fn} is a Schauder decomposition for D. Assume {un} ⊂ L(D, D) is an associated sequence of
coordinate projection to {Fn}. Then, for y ∈ P (D)

y = P (y) = P

( ∞∑
n=1

un(y)
)

=
∞∑

n=1

P (un(y)). (3)

Since Pun|P (D) ∈ L(P (D), P (Fn)), n = 1, 2 . . . . Therefore ({P (Fn)}, {Pun}) is G-atomic decomposition of
P (D) = T (E) by (3).

Now, T is an isomorphism from E onto T (E) and Gn = T−1P (Fn). Put Pun = vn, n = 1, 2, . . ..
It follows that ({Gn}, {vn}) is G-atomic decomposition for E.

In the next theorem we generalize Theorem 2.6 [3], which is a classical construction of Pelczynski [16].

Theorem 3.12. Let E be a Banach space. Then the following are equivalent:

(i) There is a Banach space of scalar valued sequences XΦ, so that ({Gn}, {un}) satisfies Definition 3.1 (i.e. is
an G-atomic decomposition for E).

(ii) There is a Banach space D with a Schauder decomposition ψ = {An} so that E ⊂ D and there is a bounded
linear projection P : D → E with P{An} = Gn, for all n ∈ N.

Proof. (i)⇒(ii) This implication is obvious with D = E and {An} = {Gn} and P = IE in Theorem 3.10.

(ii)⇒(i) This follows with the argument of the above proof of Theorem 3.11.

Now we proceed to examine the general relationship between finite-dimensional G-atomic decompositions and
approximation property in Banach space theory.

We recall the following definition:
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Definition 3.13 ([17]). A sequence of non zero finite rank operators {vi} from a Banach space E into itself is
called a finite dimensional expansion of the identity of E, if

x =
∞∑

i=1

vi(x), x ∈ E.

In view of above definition, we prove the following result.

Theorem 3.14. A Banach space E has a finite-dimensional G-atomic decomposition ({Gn}, {vn}) (i.e, such that
dim Gn < ∞ for all n = 1, 2, . . .) if and only if E admits a finite-dimensional expansion {vn} of the identity of E.

Proof. Let ({Gn}, {vn}) be finite dimensional G-atomic decomposition for E. Then dimGn < ∞ for all n = 1, 2, . . .

and x =
∞∑

n=1
vn(x), x ∈ E.

Therefore, an associated sequence of operators {vn} for {Gn} is a finite-dimension expansion of E.
Conversely, if {vn} is a finite-dimensional expansion of the identity of E, then

{Gn} = {vn(E)}
i.e. ({Gn}, {vn}) is a finite-dimensional G-atomic atomic decomposition of E.

Remark 3.15. With the help of above result we can classified finite G-atomic decompositions in terms of several
forms of the approximation property for Banach spaces.
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