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Abstract

This paper introduces a specific subclass of m-topological transformation semigroup spaces, referred to as closed m-topological full
transformation semigroup spaces. It defines both the clopen and non-clopen elements within these spaces and explores the nature of their
roots. The study presents formulas for clopen and non-clopen elements, as well as for the closed m-topological full transformation semigroup
spaces. Furthermore, numerical and graphical results for degrees 2 and 3 are provided to illustrate the findings.
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1. Introduction

The term ”tropical” was introduced by a French mathematician. Tropical geometry has emerged as a significant new field that connects
algebraic geometry, with its techniques being employed to address problems in enumerative geometry and arithmetic geometry. This field
builds on the older area of tropical mathematics, also known as max-plus algebra, which has applications in semigroup theory, computer
science, and optimization. Tropical algebraic geometry is a fascinating and emerging area of mathematical research focused on the study of
piecewise-linear functions that resemble algebraic varieties. In analogy to classical algebra, a tropical polynomial expression

f (x) = c⊙
k⊕

i=1
(x⊙ x⊙−1

i ) (1.1)

where c = min{ f (x)− xi | i = 1,2, . . . ,k}. defines a tropical polynomial function f (x) in the context of tropical polynomials arising from
m-topological transformation semigroups. The foundational ideas of this field have been present for some time, with early contributions
from [5, 6, 11, 13, 14].
Let Xn = {1,2,3...n}. A partial transformation α : Domα ⊆ Xn 7→ Imα ⊂ Xn is said to be Full if Domα = Xn; otherwise it is called strictly
partial [15]. Recently,[8], [9] introduced the concept of m-topological transformation semigroup spaces, which they defined as set of
transformation semigroups that satisfy the properties of topological spaces, they studied a subclass called Regular spaces, Mψn and also
examined their workdone and power. MTn denotes m-topological full transformation semigroup spaces denoted by MPn denotes m-topological
partial transformation semigroup spaces. If α and β are two elements of a transformation semigroup spaces, the following definition holds
α ∩β = min{αx,βx},α ∪β = max{αx,βx}, for all αx ∈ Imα and βx ∈ Imβ , α ⊆ Mδ is open, then αc = |n−αx|, where n = max(X) and
Mδ is m-topological transformation semigroup spaces. Throughout, this paper our considerations are the discrete set. The main objects of
this paper are the subclasses of MTn : closed m-topological full transformation semigroup spaces denoted by MCTn , which are obtained by
the complements of MTn . The notation Cl(MCTn) refers to the clopen elements of m-topological full transformation semigroup spaces, also
denoted as MTCTn , while NCl(MCTn) denotes the non-clopen elements of m-topological full transformation semigroup spaces.
In the study of clopen topological spaces [2, 3, 7], some study on cubic polynomials [12, 17], recent work by [1, 10, 16] has focused
on the tropicalization of elements in different classes of full transformation semigroups. The goal of this paper is to examine the nature
of roots in tropical polynomial of Cl(MCTn) and NCl(MCTn). The study explore of the nature of roots in tropical polynomials within the
context of Cl(MCTn) and NCl(MCTn), which is relatively new area of study. By investigating the behavior and characteristics of both clopen
and non-clopen elements, the research contributes to a deeper understanding of the algebraic properties of MCTn . This analysis not only
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enhances knowledge in the field of tropical mathematics but also provides potential applications in areas such as optimization, semigroup
theory, and computational mathematics, where understanding the interaction of these elements is crucial. It is important to note that
Cl(MCTn)∪NCl(MCTn) constitutes MCTn . Therefore, MCTn refers to both types of elements collectively or to either type individually.

2. Preliminaries

Definition 2.1. [9], Let δ be the chart on Xn = {1,2,3, ...}. The map α : Dom(α)⊆ Xn → Im(α)⊆ Xn is said to be a full transformation
semigroup; denoted by Tn, if Dom(α) = Xn, and partial transformation if Dom(α)⊆ Xn; denoted by Pn.

Definition 2.2. [9], A set of transformations δ is said to be an m-topological transformation semigroup (shortened as Mδ ) if it satisfies the
following properties:

1. α ∈ Mδ ; and /0 ∈ Mδ by default.
2. α is closed under arbitrary unions in Mδ ;
3. α is closed under finite intersections in Mδ .

The elements of MCTn are as follows :
When n = 2, we have the following transformations

Figure 1: The Elements of MCT2

The elements of MCT2 are pictured in Figure (1) above. We presented the elements of NCl(MCT2) with black nodes and the elements of
Cl(MCT2) with red nodes. The diagram shows the permutation of each element. MCT2 = 4, Cl(MCT2) = 1, and NCl(MCT2) = 3
For n = 3, we have the following transformations

Figure 2: The Elements of MCT2

The elements of MCT3 are pictured in Figure (2) above. We presented the elements of NCl(MCT3) with black nodes and the elements of
Cl(MCT3) with red nodes. The diagram shows the permutation of each element.MCT3 = 27, Cl(MCT3) = 8, and NCl(MCT3) = 19

Relationship between Discrete m-topological transformation semigroup spaces
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MPn MTn

MCTn Cl(MCTn)

NCl(MCTn)

Figure 3: Relationship Diagram

Remark 2.3. It is important to note that the transformations are in this order Cl(MCTn)⊂ MCTn and NCl(MCTn)⊂ MCTn , (MCTn)⊂ MTn ⊂ MPn

In this paper our consideration are the elements of Cl(MCTn) and NCl(MCTn).

Lemma 2.4. Let MCTn ⊆ Tn. Then for x,αx ∈ n

MCTn = nn

for n ≥ 0

Lemma 2.5. Let Cl(MCTn)⊆ Tn. Then for x,αx ∈ n

Cl(MCTn) = (n−1)n

forn ≥ 0

Lemma 2.6. Let NCl(MCTn)⊆ Tn. Then for x,αx ∈ n

NCl(MCTn) = nn − (n−1)n

is always positive and grows as n increases f orn ≥ 1.

Proof. We want to prove that nn − (n−1)n is positive and grows as n increases. We will use mathematical induction.
For n = 1:

11 − (1−1)1 = 1−0 = 1 (2.1)

The base case holds true. By Induction, let us assume the statement holds for some arbitrary k ≥ 1:

kk − (k−1)k ≥ 1 (2.2)

We need to show that the statement holds for k+1,

(k+1)k+1 − kk+1 ≥ 1 (2.3)

Consider the expression:

(k+1)k+1 − kk+1 (2.4)

We will use the binomial expansion for (k+1)k+1:

(k+1)k+1 =
k+1

∑
i=0

(
k+1

i

)
ki (2.5)

Let us examine the difference:

(k+1)k+1 − kk+1 =

(
k+1

∑
i=0

(
k+1

i

)
ki

)
− kk+1 (2.6)

Notice that all terms in the binomial expansion of (k+1)k+1 are positive. For instance, we have:(
k+1

k

)
kk = (k+1)kk (2.7)

(
k+1
k+1

)
kk+1 = 1 (2.8)
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So, the terms in (k+1)k+1 that are not kk+1 add to a positive amount:

(k+1)k+1 = kk+1 +(k+1)kk + (other positive terms) (2.9)

Thus,

(k+1)k+1 − kk+1 = (k+1)kk + (other positive terms) (2.10)

Since (k+1)kk > 0 and all other terms are positive, we have:

(k+1)k+1 − kk+1 > 0 (2.11)

Therefore, by induction, nn − (n−1)n is positive and increases with n.
We have shown by induction that nn − (n−1)n is always positive and grows as n increases. Thus, for all n ≥ 1,

nn − (n−1)n ≥ 1 (2.12)

3. Main Result

3.1. Coefficient of Tropical Polynomials in (MCTn)

Lemma 3.1. For any finite set of tropical polynomials in (MCTn), { f1(x), f2(x), . . . , fn(x)} with coefficients in R, there exists a minimal
polynomial, denoted as fmin(x), such that fmin(x)≤ fi(x) for all i = 1,2, . . . ,n.

Proof. Consider the set of tropical polynomials { f1(x), f2(x), . . . , fn(x)}. Since these polynomials in (MCTn) are defined over the max-plus
algebra, each fi(x) achieves its minimum value at certain points xi. Let ci = min{ fi(x) | x ∈ R} denote the minimum value attained by fi(x).
Define fmin(x) =

⊕n
i=1(ci ⊙ x⊙−1

i ). This polynomial fmin(x) is constructed such that:

fmin(x)≤ fi(x) for all i = 1,2, . . . ,n.

Therefore, fmin(x) is the minimal polynomial among { f1(x), f2(x), . . . , fn(x)} in terms of achieving the minimum value over R.

Theorem 3.2. Every tropical polynomial f (x) in (MCTn) with coefficients in R and defined over the max-plus algebra has at least one root.

Proof. Let f (x) =
⊕n

i=0(ai⊙x⊙i) be a tropical polynomial form from (MCTn), where ai ∈R and ⊕, ⊙ represent tropical addition (maximum)
and multiplication (ordinary addition), respectively. Consider the minimum value c = min{ f (x) | x ∈ R} attained by f (x). Since f (x) is
continuous and defined over a closed interval in R, by the Extreme Value Theorem, f (x) achieves its minimum value c at some point
x = t ∈ R.

c = min{ f (x) | x ∈ R}. (3.1)

Since f (x) achieves its minimum value c at x = α , it follows that f (α) = c. Therefore, t is a root of f (x).

f (α) = c. (3.2)

Thus, every tropical polynomial f (x) has at least one root.

Theorem 3.3. Every tropical polynomial f (x) in (MCTn) with coefficients in R and defined over the max-plus algebra can be factored into a
product of linear factors.

Proof. Let f (x) =
⊕n

i=0(ai⊙x⊙i) be a tropical polynomial form from (MCTn), where ai ∈R and ⊕, ⊙ represent tropical addition (maximum)
and multiplication (ordinary addition), respectively.
Since f (x) form of (MCTn) is a tropical polynomial, it can achieve its minimum value at specific points x1,x2, . . . ,xk. These points are called
roots of f (x), where f (xi) = min{ f (x) | x ∈ R}.
Each root xi of f (x) corresponds to a linear factor x− xi in the factorization of f (x). Therefore, f (x) can be expressed as:

f (x) = c⊙
k⊕

i=1
(x⊙ x⊙−1

i ) (3.3)

where c = min{ f (x)− xi | i = 1,2, . . . ,k}.
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3.2. Roots of Tropical Polynomials in Cl(MCTn) and NCl(MCTn)

Proposition 3.4. Consider

f (x) = λ0xn +λ1xn−1 +λ2xn−2 + . . .+λn = 0, (3.4)

which represents either Cl(MCTn) or NCl(MCTn) of degree n and λ0 = 1. Then, roots of the equation are either zero or negative.

Proof. By Descartes’ Rule of Signs, the number of positive roots of a polynomial with real coefficients cannot exceed the number of sign
changes among the non-zero coefficients. Since all the coefficients are positive, there are no sign changes, so the number of positive roots
must be zero, implying that the roots are either zero or negative.

Proposition 3.5. Consider

f (x) = λ0x2 +λ1x+λ2 = 0, (3.5)

be a quadratic polynomial in NCl(MCTn), where λ2 = 0. The polynomials has non-complex roots, and solution of the forms.

i x1 = 0

ii x2 =−λ1

Proof. Since, f (x) is of degree 2 and NCl(MCTn), we have λ0 = 1.
Case I. Since, λ2 = 0 we have x2 +λ1x = 0 this implies x(x+λ1) = 0.
Hence, x = 0 or x =−λ1
Case II. Conversely, if λ2 ̸= 0. Then the roots of the polynomials has repeated nonzero root.

Theorem 3.6. Let

f (x) = λ0x3 +λ1x2 +λ2x+λ3 = 0 (3.6)

be the general form of a cubic tropical polynomial in a closed m-topological transformation semigroup. The roots of this polynomial satisfy
the following: at e

2kπi
3 for k = 0,1,2

x1 =
−λ1

3
+

3

√√√√√(9λ1λ2 −27λ3 −2λ 3
1

54

)2
+

(
3λ2 −λ 2

1
9

)3
+

(
9λ1λ2 −27λ3 −2λ 3

1
54

)
+

3

√√√√√(9λ1λ2 −27λ3 −2λ 3
1

54

)2
+

(
3λ2 −λ 2

1
9

)3
−
(

9λ1λ2 −27λ3 −2λ 3
1

54

) (3.7)

x2 =
−λ1

3
+

3

√√√√√(9λ1λ2 −27λ3 −2λ 3
1

54

)2
+

(
3λ2 −λ 2

1
9

)3
−
(

9λ1λ2 −27λ3 −2λ 3
1

54

)
e

2πi
3 +

3

√√√√√(9λ1λ2 −27λ3 −2λ 3
1

54

)2
−
(

3λ2 −λ 2
1

9

)3
−
(

9λ1λ2 −27λ3 −2λ 3
1

54

)
e−

2πi
3

(3.8)

x3 =
−λ1

3
+

3

√√√√√(9λ1λ2 −27λ3 −2λ 3
1

54

)2
+

(
3λ2 −λ 2

1
9

)3
−
(

9λ1λ2 −27λ3 −2λ 3
1

54

)
e

4πi
3 +

3

√√√√√(9λ1λ2 −27λ3 −2λ 3
1

54

)2
−
(

3λ2 −λ 2
1

9

)3
−
(

9λ1λ2 −27λ3 −2λ 3
1

54

)
e−

4πi
3

(3.9)

Proof. Since, equation (3.6) is the general form of tropical polynomial, we divide through by the coefficient of x3 that is

f (x) = x3 +
λ1x2

λ0
+

λ2x
λ0

+
λ3

λ0
. (3.10)

To express equation (3.10) in terms of Cardon’s equation

f (x) = x3 +
λ2x
λ0

+
λ3

λ0
= 0. (3.11)

We eliminate x2 by setting y = x+ λ1
3λ0

. This implies x = y− λ1
3λ0

by substituting for x in equation (3.10) we have:(
y− λ1

3λ0

)3
+

λ1

λ0

(
y− λ1

3λ0

)2
+

λ2

λ0

(
y− λ1

3λ0

)
+

λ3

λ0
= 0. (3.12)
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Expanding and simplifying gives

y3 +

(
λ1

λ0
− λ1

λ0

)
y2 +

(
λ 2

1
3λ0

−
2λ 2

1
3λ0

+
λ2

λ0

)
y+
(

λ3

λ0
−

λ 3
1

27λ 3
0
+

λ 3
1

9λ 2
0
− λ1λ2

3λ 2
0

)
= 0. (3.13)

From equation (3.13) y2 = 0. Also, since our consideration are closed transformation semigroups λ0 = 1, this implies

y3 +

(
3λ2 −λ 2

1
2

)
y+
(

27λ3 +2λ 3
1 −9λ1λ2

27

)
= 0. (3.14)

Hence, equation (3.14) is in Cardino’s form.

Therefore, let β =
3λ2−λ 2

1
2 and γ =

27λ3+2λ 3
1 −9λ1λ2

27 .
We express equation (3.14) as

y3 +βy+ γ = 0. (3.15)

From equation (3.15) let τ = y+ β

3τ
this implies y = τ − β

3τ
, substituting y, gives

(
τ − β

3τ

)3
+β

(
τ − β

3τ

)
+ γ = 0. (3.16)

Expanding equation (3.16) gives(
τ

3 −βτ +
β 3

3τ
− β 3

27τ3

)
+

(
βτ − β 2

3τ

)
+ γ = 0. (3.17)

By simplification we have

τ
3 − β 3

27τ3 + γ = 0. (3.18)

Multiplying through by τ3 give

(τ3)2 + γτ
3 − β 3

27
+= 0. (3.19)

Applying the formula method of quadratics equation gives

τ
3 =

−γ ±
√

γ2 + 4β 3

27

2
. (3.20)

τ
3 =

−γ ±
√

γ2 + 4β 3

27

2
. (3.21)

ζ1 =
3

√
−γ +

√
27γ2 +4β 3

54
, ζ2 =

3

√
−γ −

√
27γ2 +4β 3

54
(3.22)

The three roots of the depressed cubic are:

y=ζ1e
2kπi

3 +ζ2e−
2kπi

3

where k = 0,1,2. Recall that x = y− λ1
3 .

Hence, we have xk = ζ1e
2kπi

3 +ζ2e−
2kπi

3 − λ1
3 .

3.3. Numerical Evaluations of Roots in Tropical Polynomials for Cl(MCTn),NCl(MCTn) and their corresponding Graphs

Example 3.7. Given:

λ0 = 1, λ1 = 3, λ2 = 5, λ3 = 1

The formula to find the root of x1 at k = 0 is:

x1 =−λ1

3
+

3

√
q+
√

q2 + p3 +
3

√
q−
√

q2 + p3

where:

p =
3λ2 −λ 2

1
9
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q =
9λ1λ2 −27λ3 −2λ 3

1
54

First, calculate p:

p =
3λ2 −λ 2

1
9

(3.23)

p =
3(5)− (3)2

9
=

2
3

(3.24)

Next, calculate q:

q =
9λ1λ2 −27λ3 −2λ 3

1
54

(3.25)

q =
9(3)(5)−27(1)−2(3)3

54
(3.26)

q =
54
54

= 1 (3.27)

Calculate the discriminant:

q2 + p3 = 12 +

(
2
3

)3
(3.28)

1+0.2963 ≈ 1.2963 (3.29)

Find
√

q2 + p3:
√

1.2963 ≈ 1.1388 (3.30)

Calculate the cube roots:

3

√
q+
√

q2 + p3 (3.31)

3
√

1+1.1388 =
3
√

2.1388 ≈ 1.285 (3.32)

3

√
q−
√

q2 + p3 (3.33)

3
√

1−1.1388 = 3
√
−0.1388 ≈−0.5140 (3.34)

Now sum these results and adjust for the − λ1
3 term:

x1 =−3
3
+1.285−0.5140 (3.35)

x1 =−1+0.7710 ≈−0.2291 (3.36)

Therefore, the root x1 is approximately:

x1 ≈−0.2291
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Figure 5: Graph of tropical polynomial for Cl(MCT3 )

For roots of x2 and x3 at k = 1,2. We use Python 3.9 Codes.

Polynomial Roots
x2 +3x+1 = 0 x1 ≈−0.38, x2 ≈−2.62

x3 +3x2 +5x+1 = 0 x1 ≈−0.2291, x2 ≈−1.3855+1.5639i, x3 ≈−1.3855−1.5639i,
x3 +3x2 +5x+2 = 0 x1 ≈−0.5466, x2 ≈ 1.2267+1.4677i, x3 ≈−1.2267−1.4677i,
x3 +3x2 +4x+1 = 0 x1 ≈−0.3177, x2 ≈−1.3412+1.1615i, x3 ≈−1.3412−1.1615i
x3 +3x2 +4x+2 = 0 x1 ≈−1, x2 ≈−1+1i, x3 ≈−1−1i
x3 +4x2 +5x+1 = 0 x1 ≈−0.2451, x2 ≈−1.8774+0.7449i, x3 ≈−1.8774−0.7449i
x3 +4x2 +5x+2 = 0 x1 ≈−1, x2 ≈−2, x3 ≈−1
x3 +4x2 +4x+1 = 0 x1 ≈−1, x2 ≈−0.382, x3 ≈−2.618
x3 +4x2 +4x+2 = 0 x1 ≈−2.8393, x2 ≈−0.5804+0.6063i, x3 ≈−0.5804−0.6063i

Table 1: Roots of tropical polynomials of Cl(MCT2 ) and Cl(MCT3 )

−5 −4 −3 −2 −1 1 2

−2

2

4

6

8

10

x

f (x) x2 +3x+1

Figure 4: Graph of tropical polynomial of Cl(MCT2 )
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Polynomial Roots
x2 +3x = 0 x1 ≈ 0, x2 ≈−3.00
x2 +2x = 0 x1 ≈ 0, x2 ≈−2.00

x2 +2x+1 = 0 x1 ≈−1.00, x2 ≈−1.00
x3 +2x2 +3x = 0 x1 ≈ 0, x2 ≈−1.00+1.41i, x3 ≈−1.00−1.41i
x3 +2x2 +4x = 0 x1 ≈ 0, x2 ≈−1.00+1.73i, x3 ≈−1.00−1.73i
x3 +2x2 +5x = 0 x1 ≈ 0, x2 ≈−1.00+2.00i, x3 ≈−1.00−2.00i
x3 +4x2 +5x = 0 x1 ≈ 0, x2 ≈−2.00+1.00i, x3 ≈−2.00−1.00i
x3 +3x2 +5x = 0 x1 ≈ 0, x2 ≈−1.50+1.66i, x3 ≈−1.50−1.66i
x3 +3x2 +4x = 0 x1 ≈ 0, x2 ≈−1.50+1.32i, x3 ≈−1.50−1.32i
x3 +3x2 +3x = 0 x1 ≈ 0, x2 ≈−1.50+0.86i, x3 ≈−1.50−0.86i
x3 +4x2 +4x = 0 x1 ≈ 0, x2 ≈−2.00, x3 ≈−2.00
x3 +4x2 +3x = 0 x1 ≈ 0, x2 ≈−1.00, x3 ≈−3.00

x3 +2x2 +5x+1 = 0 x1 ≈−0.22, x2 ≈−0.89+1.95i, x3 ≈−0.89−1.95i
x3 +2x2 +3x+1 = 0 x1 ≈−0.43, x2 ≈−0.78+1.31i, x3 ≈−0.78−1.31i
x3 +2x2 +4x+1 = 0 x1 ≈−0.28, x2 ≈−0.86+1.67i, x3 ≈−0.86−1.67i
x3 +4x2 +3x+1 = 0 x1 ≈−0.43, x2 ≈−3.15+0.37i, x3 ≈−3.15−0.37i
x3 +3x2 +3x+1 = 0 x1 ≈−1.00, x2 ≈−1.00, x3 ≈−1.00
x3 +3x2 +3x+2 = 0 x1 ≈−2.00, x2 ≈−0.50+0,87i, x3 ≈−0.50−0,87i
x3 +2x2 +3x+2 = 0 x1 ≈−1.00, x2 ≈−0.50+1.32i, x3 ≈−0.50−1.32i
x3 +2x2 +5x+2 = 0 x1 ≈−0.47, x2 ≈−0.77+1.92i, x3 ≈−0.77−1.92i
x3 +4x2 +3x+2 = 0 x1 ≈−3.27, x2 ≈−0.37+0.69i, x3 ≈−0.37−0.69i
x3 +2x2 +4x+2 = 0 x1 ≈−0.64, x2 ≈−0.68+1.63i, x3 ≈−0.68−1.63i

Table 2: Roots of tropical polynomials of NCl(MCT2 ) and NCl(MCT3 )

−5 −4 −3 −2 −1 1 2 3

5

10

x

f (x) x2 +2x
x2 +3x

x2 +2x+1

Figure 6: Graph of tropical polynomial for NCl(MCT2 )
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Figure 7: Graph of tropical polynomial for NCl(MCT3 )

4. Conclusion

The graphs of the roots of tropical polynomials in Cl(MCTn) and NCl(MCTn) at n = 2 forms a parabolae with vertex (−λ0
2 ,λ1 − −λ0

4 ) with
have similar shapes, and this similarity also holds at n = 3 which form cubic functions with similar shapes. As the polynomials transform, the
graphs steepen slowly. The end behavior of the roots for any x shows that as x → ∞, f (x)→ ∞ for all positive values of x, and as x →−∞,
f (x)→−∞ for all negative values of x. Therefore, the roots of Cl(MCTn) and NCl(MCTn) have only negative real roots and are complex at
all other points.
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