
International Journal of Advanced Mathematical Sciences, 2 (3) (2014) 132-136
c©Science Publishing Corporation
www.sciencepubco.com/index.php/IJAMS
doi: 10.14419/ijams.v2i3.3466
Research Paper

Some properties of positive derivations

on f-rings II
R. H. Redfield

Department of Mathematics, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
Email: rredfiel@hamilton.edu

Copyright c©2014 R. H. Redfield. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Theorem 10(b)(i) in the article “Some properties of positive derivations on f -rings” by Henriksen and Smith asserts
that if D is a positive derivation on a reduced f -ring and if x ∈ ker D, then {x}⊥⊥ ⊆ ker D. A counterexample is
provided to show that this assertion is false, and correct proofs are given for some results in the paper by Henriksen
and Smith that use Theorem 10(b)(i) in their proofs.
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1. Introduction

Recall that a lattice-ordered ring (`-ring) is a ring (R, +, ·) with a lattice order ≥ that is compatible with the
operations in the sense that if a ≥ b in R and c ∈ R, then a + c ≥ b + c, and if x, y ≥ 0 in R, then xy ≥ 0. For an
`-ring (R, +, ·,≥), an endomorphism D of (R, +) is positive if D(R+) ⊆ R+, where R+ = {x ∈ R

∣∣ x ≥ 0} is the
positive cone of R, and a derivation if D(ab) = aD(b) + D(a)b for all a, b ∈ R. An f -ring is an `-ring R such that
if x∧ y = 0 and z ∈ R+, then xz ∧ y = 0 = zx∧ y. Recall that if x∧ y = 0 in an f -ring, then xy = 0 [1, 9.1.10(iv)].
Colville, Davis, and Keimel initiated the study of positive derivations on f -rings in [2]. In [4], Henriksen and Smith
extended the work of [2] and provided a direct and elementary proof to its main result.

Throughout the sequel, A denotes an f -ring and D(A) denotes the set of positive derivations on A. For notation
and terminology left undefined, we refer the reader to [5].

The result of [4] with which we are concerned is Theorem 10. Recall that an element e ∈ A is regular if x = 0
whenever ex = 0 or xe = 0, that a band of A is a convex sublattice subgroup B of A such that if X ⊆ B and∨

X ∈ A, then
∨

X ∈ B, that rad A denotes the set of all nilpotent elements of A, that A is reduced if rad A = {0},
and that for Y ⊆ A, Y ⊥ = {a ∈ A

∣∣ |a| ∧ |y| = 0 for all y ∈ Y }. As usual, if D is a derivation of A, then
ker D = {a ∈ A

∣∣ D(a) = 0}.

[4, Theorem 10]: Suppose D ∈ D(A), x ∈ A, and n is a positive integer.

(a) If e is regular and ex ∈ ker D, then x ∈ ker D.

(b) If A is reduced, then:

(i) (i) x ∈ ker D implies that {x}⊥⊥ ⊆ ker D;

(ii) xn ∈ ker D implies that x ∈ ker D;
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(iii) ker D is a band;

(iv) Dn = 0 implies that D = 0;

(v) e2 = e ∈ A implies that e ∈ ker D.

(c) If A has an identity element and U(A) is the smallest band containing the units of A, then U(A) ⊂ ker D. In
particular, rad A ⊂ ker D. Also if x2 = x, then x ∈ ker D.

The proof of Theorem 10(b)(i) in [4] used the incorrect inclusion:

D({z}⊥⊥) ⊆ D({z}⊥)⊥ ⊆ {D(z)}⊥⊥. (1)

While the first inclusion is correct, the second inclusion is not (see [1, 3.2.2] and Example 2.1 below); it should be

D({z}⊥)⊥ ⊇ {D(z)}⊥⊥.

In [4], Henriksen and Smith used (1) to show that since {D(x)}⊥⊥ = {0}, D({x}⊥⊥) = {0}; obviously one cannot
conclude this from the correct relation. Indeed, as shown in Example 2.1, Theorem 10(b)(i) is not correct.

The proofs of several results in [4] used Theorem 10(b)(i). In Section 3, we provide correct proofs for some of
the these and prove special cases for others.

For use in the sequel, recall that an `-ring L is Archimedean if for all nonzero x and y in L+, there exists a
positive integer n such that nx 6≤ y, that an `-ideal of L is an ideal of the ring (L, +, ·) that is also a subgroup of
(L, +) and a convex sublattice of (L,≥), and that an `-ideal I of L is `-prime provided that I 6= L and if JK ⊆ I
for `-ideals J and K, either J ⊆ I or K ⊆ I. A set of `-prime `-ideals {Pα} of L is separating if

⋂
α Pα = {0}.

A convex `-subgroup H of L is called a quasi-band if there exists an `-prime `-ideal P of L and a band B in L/P
such that H = π−1(B), where π : L → L/P is the usual projection π(a) = a+P . The projection π is said to preserve
infinite sups if for any subset X of L, whenever

∨
X exists in L,

∨
π(X) exists in L/P and

∨
π(X) = π(

∨
X). It

is easy to see that if L is the direct sum, or direct product, of totally ordered rings, then the projections onto the
factors preserve infinite sups (see also Corollary 3.8 below).

Finally recall that if R is a ring with unit element and D is a derivation on R, then D(1) = 0 because
D(1) = 1D(1) + D(1)1−D(1) = D(1 · 1)−D(1).

2. The Examples

Our first example shows that both Theorem 10(b)(i) and the second inclusion in (1) are false.

Example 2.1 Let R be the totally ordered field of real numbers and R = R[x] be the polynomial ring over
R. Define a polynomial in R positive if the coefficient of its highest power is positive. Then R becomes a totally
ordered domain which is not Archimedean, and the usual derivative D(

∑N
i=0 ρix

i) =
∑N

i=1 iρix
i−1 on R is a positive

derivation on R. Then ker D is the set of constant polynomials, and for any 0 6= a ∈ ker D, {a}⊥ = {0} and hence
{a}⊥⊥ = R = R[x]. So a⊥⊥ 6⊆ ker D. Of course, since R is a domain, it is reduced. Note finally that since

D({x}⊥)⊥ = D({0})⊥ = {0}⊥ = R 6⊆ {0} = {0}⊥⊥ = {D(x)}⊥⊥,

the second inclusion in (1) is not true in R.

We next note that an Archimedean f -ring may have a derivation D for which ker D is not a band. The f -ring
we construct is not reduced and has a separating set of minimal `-prime `-ideals whose projections preserve infinite
sups.

Example 2.2 Let L be the `-subgroup of all eventually constant elements of the Achimedean Abelian `-group
of

∏∞
1 R (with coordinatewise order): f ∈ L if and only if there exists 1 ≤ N ∈ Z such that for all m,n ≥ N ,

f(m) = f(n).
Pick an integer κ > 1 and define a multiplication on L by letting

(fg)(n) =

{
f(n)g(n) if n < κ

0 if n ≥ κ
.
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It is easy to check that (L,+, ·,≥) is a commutative Archimedean f -ring. For j ≥ 1, let bj ∈ L is the element

bj(n) =

{
1 if n = j

0 if n 6= j
.

Then bκ is a nonzero element of L such that b2
κ = 0, and thus L is not reduced.

For each integer k ≥ 1, let Pk = {f ∈ L
∣∣ f(k) = 0}. It is easy to see that for each f ∈ Pk, there exists g 6∈ Pk

such that fg ∈ Pk, and hence that Pk is a minimal `-prime `-ideal by [5, Theorem 3.2.22]. It is obvious that {Pk}
is separating, and it is easy to check that each projection πk : L → L/Pk, defined by πk(r) = r + Pk, preserves
infinite sups.

Define D : L −→ L by letting

D(f)(n) =

{
lim

i→∞
f(i) if n = κ

0 if n 6= κ
.

It is easy to check that D is a positive endomorphism of (L, +,≥) with kernel ker D =
∑∞

n=1 R. Furthermore, by
the definitions given above, for all f, g ∈ L, D(fg) = 0 and fD(g) + D(f)g = 0 + 0 = 0 as well so that D is a
derivation on L. Certainly each bj is in

∑∞
n=1 R, and since

∨∞
j=1 bj is the function that is constantly 1,

∨∞
j=1 bj ∈ L.

Then since
∨∞

j=1 bj 6∈
∑∞

n=1 R, ker D is not a band.

3. The Theorems

In [4], Henriksen and Smith use Theorem 10(b)(i) to prove Theorems 10(b)(ii), 10(b)(iii), and 10(b)(iv). Without
using Theorem 10(b)(i), we prove Theorem 10(b)(ii) (Theorem 3.2 below), a generalization of Theorem 10(b)(iv)
(Theorem 3.3 below), and a special case of Theorem 10(b)(iii) (Theorem 3.7 below).

Lemma 3.1 Suppose that D ∈ D(A) and z ∈ A. If A is reduced, then |D(z)| = D(|z|).
Proof. We begin by noting that if x ∧ y = 0 in A, then D(x) ∧ D(y) = 0. For if x ∧ y = 0, then, since A
is an f -ring, xy = 0 and hence 0 = D(xy) = xD(y) + D(x)y. Then since D is positive, xD(y) = 0 so that
0 = D(xD(y)) = D(x)D(y) + xD(D(y)) and thus D(x)D(y) = 0. So since A is reduced, D(x) ∧ D(y) = 0 by [1,
9.3.1(ii)].

In particular, for any z ∈ A, z = z+−z− where z+∧z− = 0. So D(z) = D(z+)−D(z−) and D(z+)∧D(z−) = 0
and therefore by [3, Proposition 4.2], D(z)+ = D(z+) and D(z)− = D(z−). Then |D(z)| = D(z)+ + D(z)− =
D(z+) + D(z−) = D(z+ + z−) = D(|z|).

Theorem 3.2 [4, Theorem 10(b)(ii)] Suppose that D ∈ D(A), x ∈ A, and n is a positive integer. If A is
reduced, then xn ∈ ker D implies that x ∈ ker D.

Proof. Suppose that xn ∈ ker D. By [1, 9.1.10(iii)], since A is an f -ring, |xn| = |x|n, and thus by Lemma 3.1, since
D(xn) = 0,

0 = |D(xn)| = D(|xn|) = D(|x|n) = |x|n−1D(|x|) + D(|xn−1|)|x|.
Therefore, since D is positive, |x|n−1D(|x|) = 0. Then

0 = D(|x|n−1D(|x|)) = |x|n−1D(D(|x|)) + D(|x|n−1)D(|x|),
and thus

0 = D(|x|n−1)D(|x|) = |x|n−2D(|x|)D(|x|) + D(|x|n−2)|x|D(|x|)
so that |x|n−2D(|x|)2 = 0. Applying this argument sufficiently many times, we can conclude that D(|x|)n = 0, and
hence since A is reduced, that D(|x|) = 0, i.e., that |x| ∈ ker D. But since D is positive, ker D is convex, and thus
x ∈ ker D.

Theorem 3.3 Suppose that R is a reduced `-ring, D is a positive derivation on R, and n is a positive integer.
Then Dn = 0 implies that D = 0.
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Proof. Let x ∈ R+. By hypothesis,

0 = Dn(xn) = Dn−1(xD(xn−1) + D(x)xn−1) = Dn−1(xD(xn−1)) + Dn−1(D(x)xn−1),

and thus since D is positive, Dn−1(D(x)xn−1) = 0. Then

0 = Dn−2(D(x)D(xn−1) + D2(x)xn−1) = Dn−2(D(x)D(xn−1)) + Dn−2(D2(x)xn−1),

and hence Dn−2(D(x)D(xn−1)) = 0. So

0 = Dn−2(D(x)(xD(xn−2) + D(x)xn−2) = Dn−2(D(x)xD(xn−2)) + Dn−2(D(x)2xn−2),

and thus Dn−2(D(x)2xn−2) = 0. Applying this argument sufficiently many times, we conclude that D(x)n = 0,
and thus since R is reduced, that D(x) = 0. Since this is true for all x ∈ R+, D = 0.

Corollary 3.4 [4, Theorem 10(b)(iv)] Suppose that D ∈ D(A), x ∈ A, and n is a positive integer. If A is
reduced, then Dn = 0 implies that D = 0.

The other results in [4] whose proofs use Theorem 10(b)(i) are Theorem 10(b)(iii) and the first part of Theorem
10(c) (that U(A) ⊂ ker D). We conclude by showing that these assertions are indeed true for totally ordered rings
(Theorem 3.6) and for reduced f -rings that possess a separating set of minimal `-prime `-ideals whose projections
preserve infinite sups (Theorem 3.7).

Lemma 3.5 Suppose that A has a unit element and that D ∈ D(A). If u is a unit of A, then u ∈ ker D; if ker D
is a band, then U(A) ⊆ ker D.

Proof. By [1, 9.1.10(vi)], 1 > 0 and by [1, 9.1.10(iii)], |uu−1| = |u||u−1|. So 0 = D(1) = |u|D(|u−1|) + D(|u|)|u−1|,
and thus D(|u|)|u−1| = 0. But then D(|u|) = D(|u|)|u−1u| = 0|u| = 0, i.e., |u| ∈ ker D. Since D is positive, ker D
is convex so that u ∈ ker D. It follows that if ker D is a band, then U(A) ⊆ ker D.

Theorem 3.6 Let T be a totally ordered ring and let D be a positive derivation on T . Then ker D is a band, and
if T has an identity element, U(T ) ⊆ ker D.

Proof. Suppose that X ⊆ ker D and that x =
∨

X in T . For any a ∈ X, x ≥ a, and since D is a positive
derivation on T , D(x) ≥ D(a) = 0. Suppose that 0 6= z ∈ X. Then x − |z| < x and thus x − |z| is not an upper
bound for X. So since T is totally ordered, there exists an element w ∈ X such that x − |z| ≤ w. It follows that
D(x) −D(|z|) ≤ D(w) = 0. But since T is totally ordered, either D(|z|) = D(z) = 0 or D(|z|) = D(−z) = 0, and
hence D(x) ≤ 0. So 0 ≤ D(x) ≤ 0, i.e., x ∈ ker D, and thus ker D is a band. If T has an identity element, then
U(T ) ⊆ ker D by Lemma 3.5.

Theorem 3.7 Suppose D ∈ D(A).

1. Then ker D is an intersection of quasi-bands of A.

2. If A has a separating set of minimal `-prime `-ideals whose projections preserve infinite sups, then ker D is
a band.

3. If ker D is a band and A has an identity element, then U(A) ⊆ ker D.

Proof. Note that since A is reduced, there are minimal `-prime `-ideals Pi of A such that
⋂

Pi = {0} (see [3, Section
10] and [1, 9.3.2]), and by [1, 9.2.5(iii)], each A/Pi is a totally ordered domain. For each Pi, take 0 ≤ xi ∈ Pi. By
[5, Theorem 3.2.22], there exists 0 ≤ yi 6∈ Pi such that xiyi = 0. Then 0 = D(xiyi) = xiD(yi) + D(xi)yi and hence
D(xi)yi = 0. Since yi 6∈ Pi, D(xi) ∈ Pi by [1, 9.3.1(iv)]. That is, D(Pi) ⊆ Pi. Now let πi : A → A/Pi be the
usual projection πi(a) = a + Pi. Define Di : A/Pi → A/Pi by Di(a + Pi) = D(a) + Pi. Since D(Pi) ⊆ Pi, Di is
well-defined, and it is straightforward to verify that Di is a positive derivation on A/Pi.

(1) By Theorem 3.6, ker Di is a band in A/Pi, and it is not difficult to check that ker D =
⋂

i π−1
i (ker Di).

(2) We will show that each π−1
i (ker Di) is a band of A. Let X ⊆ π−1

i (ker Di) and suppose that x =
∨

X exists
in A. Then by hypothesis, πi(x) =

∨
πi(X) exists in A/Pi, and since πi(X) ⊆ ker Di, πi(x) ∈ ker Di by Theorem

3.6. That is, x ∈ π−1
i (ker Di). So each π−1

i (ker Di) is a band of A, and since ker D =
⋂

i π−1
i (ker Di) by (1), ker D

is also a band [3, Proposition 21.4].
(3) If A has an identity element, then U(A) ⊆ ker D by Lemma 3.5.

A collection of reduced f -rings that satisfy the conditions of Theorem 3.7(2) is the following.
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Corollary 3.8 Suppose that {Tα} is a collection of reduced totally ordered rings and recall that
∏

α Tα is a reduced
f -ring with respect to the coordinatewise operations and order. If R is an `-subring of

∏
α Tα that contains

∑
α Tα

and D ∈ D(R), then ker D is a band, and if as well R has an identity element, then U(R) ⊆ ker D.

Proof. We will show that each projection πα : R → Tα preserves infinite sups. Suppose by way of contradiction
that the projection πγ does not preserve infinite sups. Then there exists {xi} ⊆ R such that

∨
i xi exists in R but

πγ(
∨

i xi) 6=
∨

i πγ(xi). Then since Tγ is totally ordered and πγ(
∨

i xi) > πγ(xi) for all i, there exists 0 < t ∈ Tγ

such that πγ(
∨

i xi)− t ≥ πγ(xi) for all i. Since
∑

α Tα ⊆ R, the following element t exists in R:

tα =

{
t if α = γ

0 if α 6= γ
.

Then πγ(
∨

i xi − t) = πγ(
∨

i xi) − t ≥ πγ(xi) for all i and πα(
∨

i xi − t) = πα(
∨

i xi) ≥ πα(xi) for all i if α 6= γ.
So

∨
i xi >

∨
i xi − t ≥ xi for all i, a contradiction. It follows that each πα preserves infinite sups and hence by

Theorem 3.7 that ker D is a band and if R has an identity element as well, that U(R) ⊆ ker D.

Example 2.2 shows that Corollary 3.8 may fail if R is not reduced.
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