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Abstract

This paper presents the investigative study to derive a computational model based on hypersingular integral equa-
tions for the pre-Cantor plane-parallel diffraction structure. Such structure consists of finite numbers of the thin
impedance strips located in the XY plane. A plane transverse magnetic wave is incident from infinity on considered
diffraction structure at an angle and need to find the total field resulting from the scattering. The model which is
considered in this work is an approximation of real fractal antennas in two-dimensional case. Pre-fractal properties
of grating allow producing the newest antennas for modern mobile devices due to their compact size and broadband
properties. The purpose of this work is to develop computer model their structure using parametric representation
of hypersingular integral operator, Nyström method with specific quadrature formulas. The numerical results have
been obtained and investigated for pre-Cantor structures for calculating physics characteristics. These results have
been compared and analyzed in different mathematical models and softwares.
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1. Introduction

The electromagnetic (EM) force is one of the four fundamental interactions in nature. Today, it is important
to study the interaction of EM waves with pre-fractal structures. Because this feature allows to design the best
compact and powerful antennas in the world and to produce them for today’s variety mobile devices embodying
the newest innovative computer simulation. The analysis of various EM phenomena can be a very complicated task
from the experimental point of view. The use of mathematical modeling, however, allows simulation of complex
cases and sometimes is the only tool at hand of the engineer. Each real-life problem should be solved correctly,
timely, productivity and the decision should be available for existing computing softwares and suitable for actual
use, and of course the accuracy of the solution should be consistent. Therefore it’s important to apply a high level
of knowledge for new problems in mathematical modeling of physical processes.

One of the important features of the diffraction problem lies in calculating the scattered and total fields generated
due to the incidence of the EM waves on the diffraction structures. These fields are critically important for difficult
structures, objects and for the antennas which are used in modern mobile communication devices. Two-dimensional
(2-D) scattered field analysis of transverse magnetic (TM) wave diffraction problem based on the mathematical
model using hypersingular integral equations (IEs), is an important and crucial research of its kind. The model
discussed here is derived from the 2-D model of real fractal antennas. Such types of antennas are very useful, as
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they fulfill the requirements of recent wireless communication needs due to their compact size, low-profile design
and broadband properties.

The main contribution in the EM wave scattering and diffraction the follows authors A. Sommerfeld [1],
J. M. Cowley [2], R. King [3], J. Kong [4], in fractal electrodynamics D. Jaggard [5], in fractal multiband and
small antennas N. Cohen [6], C. Puente [7]. As for mathematical and computational sides of this type of problem
we should note authors D. Colton, R. Kress, R. Chapko, L. Monch who have important results for the numerical
solutions of hypersingular IEs (HSIEs) in scattering theory [8] using a fully discrete quadrature method by com-
bining a collocation and a quadrature method [9], and by trigonometric interpolation [10]. HSIEs are using in
different important fields and one of these fields is ocean currents and circulation, physical oceanography. The most
efficient works in this topic are from P. A. Martin, L. Farina, V. Peron where were developed an appropriate spectral
method, using Fourier expansions in the azimuthal direction and Jacobi polynomials in the radial direction [11]. In
[12] was illustrated the spectral method by choosing the problem a submerged disc is perturbed out of it original
plane. Other problems with applying Newton’s method and its modified version to solve the equations obtained
by applying a collocation method to a nonlinear HSIEs of Prandtl’s type were considered in [13]. That’s why the
considering of fractal and hypersingular properties are modern in last ten years and interesting for investigation.

The early research carried out in this field investigation are [14], [15], [16] which the boundary-value problems of
mathematical theory of diffraction have been solved based on the singular and hypersingular boundary IEs. In work
[17] was demonstrated that the mathematical models for periodic and finite plane-parallel pre-Cantor structures
that may have a multilayer diffraction structure and considering the impedance of material and the dielectric inserts,
based on HSIEs better than on the base of singular IEs (SIEs).

In [18], the discrete mathematical model and computational results of the diffraction problem on pre-fractal
impedance grating was obtained. For case with perfectly electrically conducting (PEC) strips some numerical
results were presented in [19]. The research in [20] aimed at deriving of the HSIE and the Fredholm IE of 2nd
kind with logarithmic singularities. Current article describes a computational modeling of hypersingular integral
equations and is continuation of the paper [20], where were consider the diffraction structure with impedance strips.
Mathematical model more difficult structures with PEC thin strips above reflector have been considered in [21],
with shielded dielectric layer based on singular integral equations in paper [22]. Some compared results for different
structures which are resolve by discrete singularities method were consider in [23].

2. Formulation diffraction problem

To solve a 2D diffraction problem for the TM case we calculate the total field which satisfies Maxwell’s equations,
supplemented with the Shchukin-Leontovich impedance boundary conditions. Besides, the total field must also
satisfy the Sommerfeld radiation conditions and the Meixner edge condition.

In this paper the diffraction structures, which consist of finite numbers of the impedance pre-Cantor thin strips
are shown in Fig 1. In the TM case the length of the strips have a pre-Cantor set.

Figure 1: Schematic of the considered diffraction structure.

Usually we use the theory potential or Green formula for reduce the problem from differential to integral form.
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Then it is possible to obtain the corresponding integral equations. Another theory if the total field is taken as

u(N)(ξ, ζ) =

 uNinc(ξ, ζ) + uN+ (ξ, ζ), ζ > 0,

uNinc(ξ, ζ) + uN− (ξ, ζ), ζ < 0,
(1)

where

uN± (ξ, ζ) =

+∞∫
−∞

CN± (λ)eiλξ∓γ(λ)ζdλ, ζ > 0, (ζ < 0). (2)

These Fourier series in the integral form satisfies the Helmholtz equation, the boundary conditions, the Sommerfeld
and Meixner conditions, and the conditions of conjugation in the slits, as described in [14], [24]. The radiation
condition will be satisfied if γ(λ) is given by Re(γ(λ)) ≥ 0, Im(γ(λ) ≥ 0, λ ∈ <.

We need to find the total field for calculation electromagnetic characteristics.

3. Computational model

3.1. Mathematical model

To derive the hypersingular IEs [25] we need to write down two coupled IEs using all the aforementioned conditions
as it done in [14], [15] and [17]:



+∞∫
−∞

(
CN+ (λ)− CN− (λ)

)
eiλξdλ = 0, ξ ∈ CSt(N),

+∞∫
−∞

(γ(λ) +B)
(
CN+ (λ)− CN− (λ)

)
eiλξdλ = fN1 (ξ), ξ ∈ St(N),

(3)



+∞∫
−∞

γ(λ)
(
CN+ (λ) + CN− (λ)

)
eiλξdλ = 0, ξ ∈ CSt(N),

+∞∫
−∞

(γ(λ) +B)
(
CN+ (λ) + CN− (λ)

)
eiλξdλ = fN2 (ξ), ξ ∈ St(N).

(4)

It should be noted that everywhere below the relations between unknown coefficients and unknown functions
are written in the form

BN1 (λ) =
(
CN+ (λ)− CN− (λ)

)
, BN2 (λ) = γ(λ)

(
CN+ (λ) + CN− (λ)

)
,

FNi (ξ) =
+∞∫
−∞

BNi (λ)eiλξdλ, BNi (λ) = 1
2π

+∞∫
−∞

FNi (η)e−iληdη, i = 1, 2, ξ ∈ <.

(5)

To obtain the mathematical model with hypersingular IEs we using the parametric representations specific form
as shown in [26], [27]. As were derived in [20] the mathematical model based on HSIEs takes the following form:


BFN1 (ξ)− 1

π

∫
St(N)

FN1 (η)

(η−ξ)2 dη + κ2

2π

∫
St(N)

ln |η − ξ|FN1 (η)dη + 1
π

∫
St(N)

QN1 (η, ξ)FN1 (η)dη = fN1 (ξ), ξ ∈ St(N),

FN2 (ξ)− B
π

∫
St(N)

ln |η − ξ|FN2 (η)dη + 1
π

∫
StN

QN2 (η, ξ)FN2 (η)dη = fN2 (ξ), ξ ∈ St(N),

(6)
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where B = iκZcZ0
defines impedance of the material strips, Z0 =

√
µ0

ε0
is the free space impedance, µ0, ε0 are

magnetic and dielectric constants, respectively;

K (η, ξ) = κ4

4

∞∫
−∞

expiλ(ξ−η)

γ(λ)(|λ|+γ(λ))2 dλ, KQ (ξ, η) = H
(1)
0 (κ | η − ξ |)− 2i

π ln | η − ξ |,

Q1 (η, ξ) = K (η, ξ)− κ2iπ
4 KQ (η, ξ) , Q2 (η, ξ) = B iπ

2 KQ (η, ξ) ,

fN1 (ξ) = 2
∂uNinc(ξ,ζ)

∂ζ

∣∣∣
ζ=0

, fN2 (ξ) = −2BuNinc(ξ,+0), uNinc(ξ, ζ) = eiκ(ξ sinα−ζ cosα).

(7)

Term QN2 (η, ξ) in equation (7) have a singularity in logarithm when η = ξ. For this reason we need to take
advantage and to expand to series a Hankel function using Bessel functions of the first kind. Thus, the remainders
of the series have been obtained which doesn’t have a singularity.

The solutions of the HSIEs (7) of the second kind were proposed in [28] where was considered the regularization
these IEs. The theorem on existence and uniqueness of this type of IEs have been proved there.

For numerical calculation we should to prepare our mathematical model for discretization. Introduce restrictive
conditions to the functions:

FNi,q(η) = FNi (η)
∣∣
η∈St(N)

q
, fNi,p(ξ) = fNi (ξ)

∣∣
ξ∈St(N)

p
, St

(N)
q = (αNq , β

N
q ), i = 1, 2, p, q = 1, 2N . (8)

It is essential to reduce the HSIE of the second kind on a set of intervals and the Fredholm IE of the second kind
at the same set of interval, namely - St(N), for all strips to equations on following intervals - St

(N)
q = (αNq , β

N
q ),

q = 1, 2N . Next, the Meixner condition will be satisfied if unknown functions represented by equation (8) will be
written as:

FNi,q(η) = wNi,q(η)
√

(βNq − η)(η − αNq ), i = 1, 2, q = 1, 2N , (9)

where the functions w
(N)
i,q (η), i = 1, 2, q = 1, 2N , are Holder continuous.

By choosing a normalized interval as:

g
(N)
q : (−1, 1) 7−→ (αNq , β

N
q ) : t 7−→ g

(N)
q (t) =

βNq −α
N
q

2 t+
βNq +αNq

2 , |t| < 1, (10)

the variables will be transformed to the following form

η = g
(N)
q (t), ξ = g

(N)
p (t0), |t| < 1, |t0| < 1, η ∈ St(N)

q , ξ ∈ St(N)
p , p, q = 1, 2N . (11)

We have the next view for required functions:

FNi,q(g
(N)
q (t)) = vNi,q(t)

βNq −α
N
q

2

√
1− t2, i = 1, 2, q = 1, 2N . (12)
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Introduce the notations using previous notes in formulas (7):

QN1,qp(g
(N)
q (t), g

(N)
p (t0))

p=q
=

(
βNp −α

N
p

2

)2 [
κ2

2 ln

∣∣∣∣βNp −αNp2

∣∣∣∣+ Q1(g
(N)
q (t), g

(N)
p (t0))

]
,

QN1,qp(g
(N)
q (t), g

(N)
p (t0))

p 6=q
=

(
βNq −α

N
q

2

)2
[

(−1)(
g
(N)
q (t)−g(N)

p (t0)
)2 + κ2

2 ln
∣∣∣g(N)
q (t)− g(N)

p (t0)
∣∣∣+Q1(g

(N)
q (t), g

(N)
p (t0))

]
.

(13)

QN2,qp(g
(N)
q (t), g

(N)
p (t0))

p=q
=

(
βNq −α

N
q

2

)2 [
(−B) ln

∣∣∣∣βNp −αNp2

∣∣∣∣+Q2(g
(N)
q (t), g

(N)
p (t0))

]
,

QN2,qp(g
(N)
q (t), g

(N)
p (t0))

p 6=q
=

(
βNq −α

N
q

2

)2 [
(−B) ln

∣∣∣g(N)
q (t)− g(N)

p (t0)
∣∣∣+Q2(g

(N)
q (t), g

(N)
p (t0))

]
.

(14)

After doing some detailed analytical transforms, not mentioned here, using the relations in (8) - (14) and
excluding the logarithmic and hypersingular singularities at p=q, we obtain from system (6) following its form as:



B
βNp −α

N
p

2 vN1,p(t0)
√

1− t20 − 1
π

1∫
−1

vN1,p(t)
√
1−t2dt

(t−t0)2
+ κ2

2π

(
βNp −α

N
p

2

)2 1∫
−1

ln |t− t0| vN1,p(t)
√

1− t2dt+

1
π

2N∑
q=1

1∫
−1
QN1,qp(g

(N)
q (t), g

(N)
p (t0))vN1,q(t)

√
1− t2dt = fN1,p(g

(N)
p (t0)), |t0| < 1, p = 1, 2N ,

βNp −α
N
p

2 vN2,p(t0)
√

1− t20 − B
π

(
βNq −α

N
q

2

)2 1∫
−1

ln |t− t0| vN2,p(t)
√

1− t2dt+

1
π

2N∑
q=1

1∫
−1
QN2,qp(g

(N)
q (t), g

(N)
p (t0))vN2,q(t)

√
1− t2dt = fN2,p(g

(N)
p (t0)), |t0| < 1, p = 1, 2N .

(15)

where QNi,qp(g
(N)
q (t0), g

(N)
p (t0)), fNi,p(g

(N)
p (t0)), i = 1, 2 are known smooth functions from (13) and (7).

3.2. Discretization

For numerical solution in this research was proposed discretization by specific quadrature formulas [29]. This type
is known as Nystrom type method for calculations IEs. Some of modification of this method was proposed in [30] for
solving the boundary singular IEs. More different efficient numerical methods for specific EM scattering problems
was considering by Jin Au Kong in his book [31].

The discretization of problem based on HSIE was performed as follows way. The unknown and smooth functions
are interpolated by their Lagrange polynomial of a corresponding degree in the nodes which are the nulls of
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Chebyshev polynomials of the second kind. Replacing the unknown function at its interpolation polynomial seems
correct. These polynomials in corresponding points was defined as:

vN,n−2i,p (tn0k) = vNi,p(t
n
0k), QN,n−2,n−2i,qp

(
g
(N)
q (tn0k), g

(N)
p (tn0j)

)
= QNi,qp

(
g
(N)
q (tn0k), g

(N)
p (tn0j)

)
,

fN,n−2i,p (tn0k) = fNi,p(t
n
0k), j, k = 1, n− 1, i = 1, 2.

(16)

The outside integral term in (15) should be written as

vN,n−2i,p (tn0j) =
n−1∑
k=1

vN,n−2i,p (tn0k)δj,k, tn0k = cos
(
jπ
n

)
, j = 1, n− 1. (17)

After discretization (15) and with the help of special quadrature formulas of interpolation type for all integrals
with the corresponding collocation points [29], thus the mathematical model in (6) resulted in deriving a system
for approximate solutions:



B
βNp −α

N
p

2

√
1− (tn0j)

2
n−1∑
k=1

vN,n−21,p (tn0k)δk,j −
n−1∑

k=1,j 6=k
vN,n−21,p (tn0k)×

(1−(−1)j+k)(1−(tn0k)
2)

(tn0k−t
n
0j)

2
1
n + n

2

n−1∑
k=1

vN,n−2i,p (tn0k)δk,j + κ2

2

(
βNp −α

N
p

2

)2 (−1
n

) n−1∑
k=1

vN,n−21,p (tn0k)
(
1− (tn0k)2

)
×

[
ln 2 + 2

n−1∑
r=1

Tr(t
n
0k)
r Tr(t

n
0j) + (−1)k

n Tr(t
n
0j)

]
+

2N∑
q=1

1
n

n−1∑
k=1

QN,n−2,n−21,qp (g
(N)
q (tn0k), g

(N)
p (tn0j))×

vN,n−21,q (tn0k)
(
1− (tn0k)2

)
= fN,n−21,p (g

(N)
p (tn0j)),

βNp −α
N
p

2

√
1− (tn0k)2

n−1∑
k=1

vN,n−22,p (tn0k)δk,j −
(
βNp −α

N
p

2

)2

B

(
− 1
n

n−1∑
k=1

vN,n−22,p (tn0k)
(
1− (tn0k)2

))
×

[
ln 2 + 2

n−1∑
r=1

Tr(t
n
0k)
r Tr(t

n
0j) + (−1)k

n Tr(t
n
0j)

]
+

2N∑
q=1

1
n

n−1∑
k=1

QN,n−2,n−22,qp (g
(N)
q (tn0j), g

(N)
p (tn0k))×

vN,n−22,q (tn0k)
(
1− (tn0k)2

)
= fN,n−22,p (g

(N)
p (tn0j)), p = 1, 2N , j = 1, n− 1.

(18)

where QN,n−2,n−2i,qp (g
(N)
q (tn0j), g

(N)
p (tn0k)), fN,n−2i,p (g

(N)
p (tn0k)), i = 1, 2 are known smooth functions.

We can reduce the system (18) to compact form for i = 1, 2, p = 1, 2N , j = 1, n− 1

2N∑
q=1

n−1∑
k=1

MN,n−2,n−2
i,qp

(
g
(N)
q (tn0k) , g

(N)
p

(
tn0j
))
vN,n−2i,q (tn0k) = fN,n−2i,p

(
g
(N)
p

(
tn0j
))
, (19)
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where

MN,n−2,n−2
1,qp

(
g
(N)
q (tn0k) , g

(N)
p

(
tn0j
)) p=q

= B
βNp −α

N
p

2

√
1− (tn0j)

2δk,j − (1−(−1)j+k)(1−(tn0k)
2)

(tn0k−t
n
0j)

2
1
n + n

2 +

κ2

2

(
βNp −α

N
p

2

)2 (−1
n

) (
1− (tn0k)2

) [
ln 2 + 2

n−1∑
r=1

Tr(t
n
0k)
r Tr(t

n
0j) + (−1)k

n Tr(t
n
0j)

]
+

1
nQ

N,n−2,n−2
1,qp (g

(N)
q (tn0k), g

(N)
p (tn0j))

(
1− (tn0k)2

)
,

MN,n−2,n−2
2,qp

(
g
(N)
q (tn0k) , g

(N)
p

(
tn0j
)) p=q

=
βNp −α

N
p

2

√
1− (tn0j)

2δk,j −B
(
βNp −α

N
p

2

)2 (−1
n

) (
1− (tn0k)2

)
×

[
ln 2 + 2

n−1∑
r=1

Tr(t
n
0k)
r Tr(t

n
0j) + (−1)k

n Tr(t
n
0j)

]
+ 1

nQ
N,n−2,n−2
2,qp (g

(N)
q (tn0k), g

(N)
p (tn0j))

(
1− (tn0k)2

)
,

MN,n−2,n−2
i,qp

(
g
(N)
q (tn0k) , g

(N)
p

(
tn0j
)) p 6=q

= 1
nQ

N,n−2,n−2
i,qp (g

(N)
q (tn0k), g

(N)
p (tn0j))

(
1− (tn0k)2

)
.

(20)

The final system of linear equations (19) does not contain any integrals, unlike projection methods Galerkin or
collocation. Therefore, the simple implementation, after appropriate analytical transformations have the advantage
of this approach.

After evaluate the values of unknown function in node points vN,n−2i,q (tn0k), we have to return for calculating
unknown coefficients (5) in discrete form using the same aproach as for system (19)

BNi (λ) = 1
2

2N∑
q=1

(
βNq −α

N
q

2

)2 n−1∑
k=1

vN,n−2i,q (tn0k)
(

1− (tn0k)
2
)

exp−iλg
(N)
q (tn0k) . (21)

And looking up to formula (5) and (2) we can evaluate the scattering and diffraction fields for the magnetic field
component of the total field (1). As good knowing if found a component of the magnetic field thus it is allow to
restore electric component and can evaluate the total field using Maxwell equations.

4. Numerical results

Numerical results of an applied mathematics problems are most important while we can choose the true and right
input data. It will give us new knowledge for future scientific investigations. For this reason in current paper as
input data we use previous results from papers [18], [19] which was calculated in related field but their mathematical
model was based on IEs with logarithmic and singular singularities. In work [18] was shown main numerical results
for superconducting strips from Niobium, Stannum, Plumbum and for impedance strips from constantan. Last
material is efficient as for practical use in modern mobile devices because this is copper-nickel alloy, which is
characterized by weak dependence of electrical resistance from temperature. That it is used in Fraktus company
which produces fractal antenna. In paper [19] was performed scientific computing for PEC strips and investigated
the surface charge density, relief distribution of the total field for different incident angels, RPs, scattered and total
fields for different frequencies and orders of pre-Cantor gratings.

Obtained results from system (19) we use for calculating electromagnetic characteristics such as radiation pattern
in far field, diffraction pattern in near field and main as total and scattered fields in near zone.

There is shown on Fig. 2 and Fig. 3 radiation pattern (RPs) and diffraction patterns depending on the incident
angles and how to change the magnetic component of total field.
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Figure 2: Scattered fields for molybdenum strips where
N=3, l=0.02m, f=15 GHz, α=0: a) far-field radiation pat-
tern, b) near-field diffraction pattern

Figure 3: Magnetic fields for molybdenum strips where
N=3, l=0.02m, f=15GHz, α=20: a) far-field radiation pat-
tern of the scattered field, b) near-field of the total field

The electrical resistivity and conductivity of copper (Cu), aluminum (Al), magnesium (Mg), molybdenum (Mo),
nickel (Ni) have fall values from Cu to Ni. This tendency we can see for total field for different values of impedance
pre-Cantor strips as shown on Fig. 4. Yet stay in incident angle by 20 and change the frequency to 11.2 GHz, these
computational results in diffraction pattern are present on Fig. 5.

Figure 4: Normalized near zone of the total field depend-
ing on different impedance strips, where N = 3, α = 20, l =
0.02m, f = 15 GHz

Figure 5: Near-field diffraction pattern for the a) total
and b) scattered fields for molybdenum strips where N=3,
l=0.02m, f=11.2 GHz, α=20

The magnetic field components was illustrated graphically in near and far zone on Fig. 6.

Figure 6: Magnetic fields for molybdenum strips where N=3, l=0.02 m, f=11.2 GHz, α=0: a) radiation pattern of the
scattered field, b) near field of the total field, c) diffraction pattern for total and scattered fields

Electrodynamic analysis program of FEKO was used for comparison and reliability of obtained computational
results while the recommending of input data (Fig 7).
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Figure 7: Compare RPs for cooper strips where f=11.2 GHz, N=3, l=0.01 m, α=0, calculated by the: a) created program;
b) program FEKO

The comparing the calculated results was demonstrated for the scattering problems based on HSIEs and SIEs.
Time obtaining of the numerical results for the total field values in near field where N=3 (Table 1) based on HSIE
is 1 min., and based on SIE 5 min. Note, that physical statement of the problem is the same but the mathematical
models are different. The results coincide with the average accuracy 2 · 10−8.

Table 1: Compare the component of the total field based on mathematical models on SIEs and HSIEs where N=3, l=0.02
m, f=11.2 GHz, molybdenum strips

ξ SIE Hς(ξ, 0.1) HSIE Hς(ξ, 0.1) ∆
−3 0.8931587157− 0.4479097861i 0.8931586946− 0.4479098279i 2.11e− 8 + 4.18e− 8i
−2.4 0.8899082031− 0.4575927905i 0.8899081817− 0.4575928324i 2.14e− 8 + 4.19e− 8i
−1, 8 0, 8954471217− 0, 4445156149i 0, 8954471008− 0, 4445156568i 2.09e− 8 + 4.19e− 8i
−1.2 0.879840424− 0.4688726682i 0.8798404017− 0.4688727095i 2.23e− 8 + 4.13e− 8i
−0.6 0.880254173− 0.4946200733i 0.8802541509− 0.4946201148i 2.21e− 8 + 4.15e− 8i

0 0.8916430486− 0.4654700071i 0.8916430274− 0.4654700489i 2.12e− 8 + 4.18e− 8i
0.6 0.9005422001− 0.4953638328i 0.9005421799− 0.4953638744i 2.02e− 8 + 4.16e− 8i
1.2 0.9024421723− 0.4698703838i 0.9024421521− 0.4698704252i 2.02e− 8 + 4.14e− 8i
1.8 0.8890329728− 0.444327671i 0.8890329512− 0.4443277128i 2.16e− 8 + 4.18e− 8i
2.4 0.8936472402− 0.4576809538i 0.8936472192− 0.4576809957i 2.1e− 8 + 4.19e− 8i
3 0.8909997859− 0.4478734168i 0.8909997646− 0.4478734586i 2.13e− 8 + 4.18e− 8i

5. Conclusions

Some difficulties need to resolve in order to perform a discretization of the HSIEs and the Fredholm IEs of the
second kind. And within this investigation was shown how can resolve their. A discrete mathematical model for
the pre-fractal plane-parallel diffraction structure has been investigated and derived. The results, discribed in this
paper, allowed to do the computational analysis of such IEs for investigating the total, scattered and the diffracted
fields on the pre-Cantor plane-parallel structure. We can conclude that

D mathematical model based on HSIEs of the 2-nd kind was used for impedance pre-Cantor boundary gratings
which are equivalent to corresponding boundary-value problem for the Helmholtz equation in TM cases using
the method of parametric representations of corresponding integral operators;

D computational model have been created on this base of boundary IEs using discrete singularities method
with specific quadrature formulas for scattering problem of a plane wave on boundary pre-Cantor impedance
gratings;

D algorithm and software have been created for performing the numerical experiments based on the developed
models from pre-Cantor structures with regard to calculate important electrodynamics characteristics;
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D scientific computing have been performed by developed software for considered diffraction problem on pre-
Cantor plane-parallel structure for calculate EM fields, RPs, diffraction patterns of scattered fields in near
zone depending on the different frequency EM waves, the incident angle, the grating pre-Cantor order, the
different values of impedance metals;

D results of computational experiments have been investigated and analyzed for pre-Cantor structures with
regard to compare the solutions based on HSIEs and SIEs, between created software and software of electro-
dynamic analysis FEKO.

The electromagnetic scattering on complex and difficult structures has become very interesting and important
for in-depth investigations and their subsequent analysis. Considering this importance, the relevant calculations
and numerical experiments for 3D such structures are planned to be carried out using the same approach with some
modification of quadrature method for hypersingular IEs.
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