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Abstract 
 

This paper introduces the Bayesian and E-Bayesian estimation for the shape parameter of the Kumaraswamy distribution based on type-

II censored schemes. These estimators are derived under symmetric loss function [squared error loss (SELF))] and three asymmetric loss 

functions [LINEX loss function (LLF), Degroot loss function (DLF) and Quadratic loss function (QLF)]. Monte Carlo simulation is per-

formed to compare the E-Bayesian estimators with the associated Bayesian estimators in terms of Mean Square Error (MSE). 
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1. Introduction 

The Kumaraswamy distribution is similar to the Beta distribution, 

but much simpler to use especially in simulation studies due to the 

simple closed form of both its probability density function and 

cumulative distribution function. Kumaraswamy [1], [2] proved 

that the ordinary probability distribution functions such as normal, 

log-normal, beta and empirical distributions such as Johnson and 

polynomial-transformed-normal, etc., have not great accuracy in 

fitting hydrological random variables such as daily rainfall, daily 

stream flow, etc. and developed a new probability density function 

known as the sinepower probability density function to fit up ran-

dom processes which are bounded at the lower and upper ends. 

Furthermore, Kumaraswamy [3] introduced a new probability 

distribution for double bounded random processes with hydrologi-

cal applications, which is known as Kumaraswamy distribution. 

The continuous part of Kumaraswamy distribution, denoted Kum 

( , )   has probability density function (pdf) and the cumulative 

distribution function (cdf) specified by 

 
1 1( ; , ) (1 ) , 0 1, , 0f x x x x                               (1-1)                                      

 

And 

 

( ; , ) 1 (1 ) , 0 1, , 0F x x x                            (1-2)                                                         

  

 

Where   and   are the shape parameters. Based on different 

values of   and  , Kumaraswamy [3] and Ponnambalam, et al 

[4], have referred to that the Kumaraswamy distribution can be 

used as an approximation for many distributions, such as uniform, 

triangular, and can also be reproduce result of beta distribution. 

Nadarajah [5] considered that the Kumaraswamy distribution is 

special case of the three parameter beta distribution. Jones [6] has 

obtained the main properties of the Kumaraswamy distribution. 

Furthermore, a few number of authors deals with the Kumaras-

wamy distribution under Bayesian procedure, for example; Sindhu 

et al [7] obtained Bayesian and non-Bayesian estimators for the 

shape parameter of the Kumaraswamy distribution under type-II 

censoring. Also, Eldin et al [8] produced a study in estimating the 

parameters of the Kumaraswamy distribution based on general 

progressive type- II censoring. 

The expected Bayesian estimation or briefly E-Bayesian estima-

tion is a new approach of Bayesian estimation first introduced by 

Han [9]. Han [10] obtained the E-Bayes and hierarchical Bayes 

estimates of the reliability parameter for testing data from prod-

ucts with exponential distribution under type-I censoring and by 

considering the quadratic loss function. He showed that by using 

simulation study, the E-Bayesian estimator is efficient and easy to 

operate. Yin and Liu [11] constructed the E-Bayesian estimation 

and hierarchical Bayesian estimation techniques for estimating the 

reliability parameter of the geometric distribution based on scaled 

squared loss function in complete samples. They deducted that the 

E-Bayes method is more stability and convenient in terms of cal-

culation complexity than the hierarchical Bayes method. Wei et al 

[12] applied the minimum risk equivariant estimation and E-Bayes 

estimation techniques for estimating the parameter of the Burr-XII 

distribution under entropy loss function in complete samples. 

They deducted that E-Bayes estimates have most accuracy. Jaheen 

and Okasha [13] compared the Bayesian and E-Bayesian estima-

tors for the parameters and reliability function of the Burr Burr-

XII distribution under type-II censoring and by considering the 

squared error loss and LINEX loss functions. They pointed out 

that the overall performance of the E-Bayes estimates are better 

than the similar obtained by using the Bayes criteria. Cai et al [14] 

used the E-Bayesian estimation technique for forecasting of secu-

rity investment. Okasha [15] constructed the maximum likelihood, 

Bayesian and E-Bayesian methods for estimating the scale param-

eter, reliability and hazard functions of the Weibull distribution 

under type-2 censored samples and by considering the squared 

error loss function. He deducted that the E-Bayes estimates were 

more efficient than the maximum likelihood estimates or the 

Bayes estimates. Azimi et al [16] estimated the parameter and 

reliability function of the generalized half Logistic distribution by 

http://creativecommons.org/licenses/by/3.0/
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using the Bayes and E-Bayes techniques under progressively type-

II censoring and by considering the squared error loss and LINEX 

loss functions. They deducted that the E-Bayes criteria generally is 

more efficient than the Bayes method. Javadkani et al [17] con-

structed the Bayes, empirical Bayes and E-Bayes methods for 

estimating the shape parameter and the reliability function of the 

two parameter bathtub-shaped lifetime distribution under on pro-

gressively first-failure-censored samples and by considering the 

minimum expected loss and LINEX loss functions. Okasha [18] 

applied the Bayesian and the E-Bayesian techniques for estimating 

the scale parameter, reliability and hazard functions of the Lomax 

distribution under type-2 censored and by considering the bal-

anced squared error loss function. He deducted that the perfor-

mance of the E-Bayes estimates is generally better than the Bayes 

estimates. Reyad and Othman [19] derived the Bayesian and E-

Bayesian estimates for the shape parameter of the Gumbell type-II 

distribution based on type-II censoring and by considering squared 

error, LINEX, Degroot, Quadratic and minimum expected loss 

functions. They deducted that the E-Bayes estimates were general-

ly much better than the other estimates. 

The main object of this paper is to introduce a statistical compari-

son between the Bayesian and E-Bayesian procedures for estimat-

ing the shape parameter of the Kumaraswamy distribution based 

on type-II censoring. The resulting estimators are obtained based 

on symmetric and different asymmetric loss functions and the 

results obtained in this paper can be generalized to use in complete 

sample.  

The layout of the paper is as follow. In Section 2 and 3 respective-

ly, the Bayesian and E-Bayesian estimates of the parameter   

based on type-II censored sample are derived under squared, 

LINEX, Degroot and quadratic loss functions. In Section 4, the 

properties of the E-Bayesian estimators are discussed. Simulation 

study has been performed to compare the resulting estimators in 

Section 5. Some concluding remarks have been given in the last 

Section. 

2. Bayesian estimation 

This section spotlights on the derivation of the Bayes estimates for 

the shape parameter   of the Kum ( , )   under symmetric loss 

function [squared error loss (SELF)) and three asymmetric loss 

functions (LINEX loss function (LLF), Degroot loss function 

(DLF) and quadratic loss function (QLF)]. 

In a typical life test, n  item is placed under observation as each 

failure occurs. In type-II censored technique, the test is terminated 

when the number of failure units r  is completed which is a prede-

termined condition. In this case the data collected consists of ob-

servations ,(1) (2) (3) ( ), ,... rx x x x  plus the information that ( )n r items 

survived beyond the condition of termination. The likelihood 

function for ,(1) (2) (3) ( ), ,... rx x x x  failed observations is given by 

 

) )( ) ( )
1

!
( , ) ( 1 (

( )!

n rr

i r
i

n
L x f x F x

n r
 





   
                              (2-1) 

 

Substituting (1-1) and (1-2) in (2-1), the later function can be ob-

tained to be, 
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          (2-2) 

 

Where 

( ) ( )
1

ln(1 ) ( ) ln(1
r

i r
i

H x n r x 



 
      

 
                                       (2-3) 

 

Assuming   is known, we can use the Gamma distribution as an 

conjugate prior distribution of   with shape and scale parameter 

a and b respectively and its pdf given by  

 

1( , ) , 0, , 0
( )

a b
ab

g a b e a b
a

     


                    (2-4) 

 

Combining (2-2) and (2-4), from Bayesian theorem the posterior 

density function of   can be obtained as 

 

0

1 ( )
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( )
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( )
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r a H b
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                                (2-5)  

 

That mean, the posterior distribution of   obeys ( , ).r a H b    

2.1. Bayesian estimation under squared error loss func-

tion (SELF) 

A commonly used loss function is the square error loss function 

(SELF) defined as follows: 

 
2

1
ˆ ˆ( , ) ( )L                                                                             (2-6) 

 

Where ̂  is an estimator of  . The Bayes estimator of   denoted 

by ˆ
BS can be obtained as  

 

ˆ ( )BS E x                                                                             (2-7) 

 

Where E indicated to the expectation of the posterior distribu-

tion. We can derived ˆ
BS by using (2-5) in (2-7) to be 

 

ˆ
BS

r a

H b






                                                                               (2-8) 

2.2. Bayesian estimation under LINEX loss function 

(LLF) 

Zellner [20] represent the LINEX (linear-exponential) loss func-

tion (LLF) to be  

 

 2
ˆ ˆ ˆ( , ) exp ( ) ( ) 1L m s s          

 
                                     (2-9) 

 

With two parameters 0, 0,m s   where m is the scale of the loss 

function and s  determines its shape. Without loss of generality, 

we assume 1m  . The Bayes estimator relative to LLF denoted by 

ˆ
BL can be obtained as  

 

1ˆ lnBL
sE e x

s


             
                                                     (2-10) 

 

We can obtain ˆ
BL by using (2-5) in (2-10) to be 

 

ˆ ln 1BL

r a s

s H b


   
    

   
                                                      (2-11) 

2.3. Bayesian estimation under degroot loss function 

(DLF) 

The Degroot loss function (DLF) is defined by Degroot [21] to be 
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3

ˆ
ˆ( , )

ˆ
L

 
 



 
 
 
 

                                                                    (2-12) 

 

The Bayes estimator relative to DLF denoted by ˆ
BD can be ob-

tained as  

 
2( )

ˆ

( )
BD

E x

E x









                                                                       (2-13) 

 

We can get ˆ
BD by using (2-5) in (2-13) to be 

 

1ˆ
BD

r a

H b


 



                                                                         (2-14) 

2.4. Bayesian estimation under quadratic loss function 

(QLF) 

Bhuiyan et al [22] defined the quadratic loss function (QLF) as 

follows: 

 

4

ˆ
ˆ( , )L

 
 



 
 
 
 

                                                                    (2-15) 

 

The Bayes estimator of   based on QLF denoted by ˆ
BQ  can be 

obtained as  

 
1

2

( )
ˆ

( )
BQ

E x

E x













                                                                    (2-16) 

 

We can derived ˆ
BQ by using (2-5) in (2-16) to be 

 

2ˆ
BQ

r a

H b


 



                                                                        (2-17) 

3. E-Bayesian estimation 

In this section, we consider the E-Bayes estimates of the shape 

parameter   of the Kum ( , )   under symmetric loss function 

[squared error loss (SELF)) and three asymmetric loss functions 

(LINEX loss function (LLF), Degroot loss function (DLF) and 

quadratic loss function (QLF)]. 

Based on Han [23], the prior parameters a and b must be choose 

to guarantee that ( , )g a b given in (2-4) is a decreasing function 

of . The derivative of ( , )g a b with respect to   is  

 

2
( , )

( 1)
( )

a
a b

dg a b b
e a b

d a




 


    


                                    (3-1) 

 

Note that 0, 0a b   and 0   leads to 0 1, 0a b    due to

( , )
0

dg a b

d




 , and therefore ( , )g a b is a decreasing function of

 . Suppose that a and b are independent with bivariate density 

function 

 

1 2( , ) ( ) ( )a b a b                                                                      (3-2) 

Then, the E-Bayesian estimate of   (expectation of the Bayesian 

estimate of  ) can be written as 

 

ˆ ˆ( ) ( , ) ( , )EB BE x a b a b dadb   


                                          (3-3) 

 

Where ˆ ( , )B a b  is the Bayes estimate   of given by (2-8), (2-11), 

(2-14) and (2-17). For more details see (Han [9, 24]).  

 

3.1. E-Bayesian Estimation under Squared Error Loss 

Function (SELF) 
The E-Bayes estimates of   are derived depending on three dif-

ferent distributions of the hyper-parameters a  and b . These dis-

tributions are used to study the impact of the different prior distri-

butions on the E-Bayesian estimation of . The following distribu-

tions of a and b  may be used:  

 

1 2

2( )
( , ) , 0 1, 0

c b
a b a b c

c



                       (3-4) 

 

2

1
( , ) , 0 1, 0a b a b c

c
                         (3-5) 

 

3 2

2
( , ) , 0 1, 0

b
a b a b c

c
                         (3-6) 

 

We can obtained the E-Bayes estimates of   relative to SELF 

based on 1( , )a b  which is denoted as 1
ˆ
EBS  by using (2-8) and (3-

4) in (3-3) to be 

 

1

1 20 0

2( )ˆ

2 1
1 ln 1 1

c

EBS

r a c b
db da

H b c

r H c

c c H


    

    
   

      
         
      

 
                                     (3-7)  

 

Similarly, we can derive the E-Bayesian estimates of   relative to 

SELF based on 2 ( , )a b and 3( , )a b  which are denoted as 

2 3
ˆ ˆ,EBS EBS   by using (2-8), (3-5) in (3-3) and (2-8), (3-6) in (3-3) 

respectively to be 

 

1

2 0 0

1 2 1ˆ ln 1
2

c

EBS

r a r c
db da

H b c c H


         
         

        
                  (3-8) 

 

And 

 

1

3 20 0

2 2 1ˆ 1 ln 1
c

EBS

r a b r H c
db da

H b c c Hc


         
          

        
      (3-9) 

3.2. E-Bayesian estimation under LINEX loss function 

(LLF) 

We can get the E-Bayes estimate of   relative to LLF based on 

1( , )a b  which is denoted as 1
ˆ
EBL  by using (2-11) and (3-4) in (3-

3) to be 

 

1

1 0 0 2

2( )ˆ ln 1
c

EBL

r a s c b
db da

s H b c


      
        

     
 

 

2

2

2

2

( )
ln 1

2 1 ( )
ln 1

2

1 1
ln 1

c s

H c c

Hc s

r H s c c

H s

s

s H c

      
           
 
         

                 
 

     
       

      

                         (3-10) 

 

By the same way, we can derive the E-Bayes estimates of   rela-

tive to LLF based on 2 ( , )a b and 3( , )a b  which are denoted as 
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2 3
ˆ ˆ,EBL EBL  by using (2-11), (3-5) in (3-3) and (2-11), (3-6) in (3-3) 

respectively to be 

 

1

2 0 0

1ˆ ln 1
c

EBL

r a s
db da

s H b c


     
        

     
 

 

ln 1 ln 1
2 1

2
ln 1

s H s c

H c c H sr

s H c

c H

         
           

            
   

       
      
     

   (3-11)  

 

And 

 

1

3 20 0

2ˆ ln 1
c

EBL

r a s b
db da

s H b c


     
      

     
   

 

2

2

2

2

( )
ln 1

2 1
ln 1

2

1 1
ln 1

H c c

H sc s

r H c

Hc s

s

s H c c

      
            
 
       

         
       

 
     

             

                    (3-12) 

3.3. E-Bayesian estimation under DeGroot loss function 

(DLF) 

We can obtained the E-Bayes estimates of   relative to DLF 

based on 1( , )a b  which is denoted as 1
ˆ
EBD  by using (2-14) and 

(3-4) in (3-3) to be 

 

1

1 20 0

1 2( )ˆ

2 3
1 ln 1 1

EBD

c r a c b
db da

H b c

r H c

c c H


     

    
   

      
         
      

 
                             (3-13) 

 

Also, we can derive the E-Bayesian estimates of   relative to 

DLF based on 2 ( , )a b and 
3( , )a b  which are denoted as 

2 3
ˆ ˆ,EBS EBS   by using (2-14), (3-5) in (3-3) and (2-8), (3-6) in (3-

3) respectively to be 

 

1

2 0 0

1 1 2 3ˆ ln 1
2

c

EBD

r a r c
db da

H b c c H


          
         

        
           (3-14) 

 

And 

 

1

3 20 0

1 2ˆ

2 3
1 ln 1

c

EBD

r a b
db da

H b c

r H c

c c H


    

    
   

    
      
    

 
                                      (3-15) 

3.4. Bayesian estimation under quadratic loss function 

(QLF) 

We can obtained the E-Bayes estimates of   relative to QLF 

based on 1( , )a b  which is denoted as 1
ˆ
EBD  by using (2-17) and 

(3-4) in (3-3) to be 

 

1

1 20 0

2 2( )ˆ

2 3
1 ln 1 1

EBQ

c r a c b
db da

H b c

r H c

c c H


     

    
   

      
         
      

 
                               (3-16) 

 

By the same way, we can derive the E-Bayesian estimates of   

relative to QLF based on 2( , )a b and 3( , )a b  which are denoted 

as 2 3
ˆ ˆ,EBS EBS   by using (2-17), (3-5) in (3-3) and (2-17), (3-6) in 

(3-3) respectively to be 

 

1

2 0 0

2 1 2 3ˆ ln 1
2

c

EBQ

r a r c
db da

H b c c H


          
         

        
           (3-17) 

 

And 

 

1

3 20 0

2 2ˆ

2 3
1 ln 1

c

EBQ

r a b
db da

H b c

r H c

c c H


    

    
   

    
      
    

 
                                       (3-18) 

4. Properties of E-Bayesian estimation 

This section investigated the relations among the E-Bayesian es-

timators ˆˆ ˆ ˆ, , , ( 1,2,3)EBSi EBLi EBDi EBQi i     

4.1. Relations between ˆ ( 1,2,3)EBSi i   

Proposition 1: It follows from (3-7), (3-8) and (3-9) that 

 

i) 1 2 3
ˆ ˆ ˆ
EBS EBS EBS     

 

ii) 1 2 3
ˆ ˆ ˆlim lim limEBS EBS EBS

H H H
  

  
   

 

Proof: See Appendix.  

4.2. Relations between ˆ ( 1,2,3)EBLi i   

Proposition 2: It follows from (3-10), (3-11) and (3-12) that 

 

i) 1 2 3
ˆ ˆ ˆ
EBL EBL EBL     

 

ii) 1 2 3
ˆ ˆ ˆlim lim limEBL EBL EBL

H H H
  

  
   

 

Proof: See Appendix. 

4.3. Relations between ˆ ( 1,2,3)EBDi i   

Proposition 3: It follows from (3-13), (3-14) and (3-15) that 

 

i) 3 2 1
ˆ ˆ ˆ
EBD EBD EBD     

 

ii) 1 2 3
ˆ ˆ ˆlim lim limEBD EBD EBD

H H H
  

  
   

 

Proof: See Appendix. 

4.4. Relations between ˆ ( 1, 2,3)EBQi i   

Proposition 4: It follows from (3-16), (3-17) and (3-18) that 

 

i) 1 2 3
ˆ ˆ ˆ
EBQ EBQ EBQ     
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ii) 1 2 3
ˆ ˆlim lim limEBQ EBQ EBQ

H H H
 

  
 

 
 

Proof: See Appendix. 

5. Monte Carlo simulation study 

In order to assess the statistical performances of these estimators, 

we conducted a Monte Carlo simulation in the following steps: 

Step (1): Simulation were performed under different censoring 

schemes (different values of ,n r ) and for 2   and 1, 2.s c    

Step (2): We generate a and b from uniform priors distributions 

(0, 1) and (0, c) respectively given in (3-4), (3-5) and (3-6). 

Step (3): For given values of ,a b we generate   from the gamma 

prior distribution given in (2-4). 

Step (4): For known values of , type-II censored samples are 

generated from Kum ( , )  with pdf and cdf given in (1-1) and (1-

2) respectively through the adoption of inverse transformation 

method, by using the formula 

 

 

1

1
1

)( 1 1 , 1,2,...i it F U F i n



  

     
 

 

 

Where U is a random variable obeys uniform distribution on the 

interval (0, 1) 

Step (5): Under the SELF, we compute the estimates 

1 2
ˆ ˆ ˆ, ,BS EBS EBS   and 3

ˆ
EBS  of   from (2-8), (3-7), (3-8) and (3-9) 

respectively.  

Step (6): Under the LLF, we compute the estimates 

1 2
ˆ ˆ ˆ, ,BL EBL EBL   and 3

ˆ
EBL  of   from (2-11), (3-10), (3-11) and (3-

12) respectively. 

Step (7): Under the DLF, we compute the estimates 

, ,1 2
ˆ ˆ ˆ
BD EBD EBD   and 3

ˆ
EBD  of   from (2-14), (3-13), (3-14) and (3-

15) respectively. 

Step (8): Under the QLF, we compute the estimates 

1 2
ˆ ˆ ˆ, ,BQ EBQ EBQ   and 3

ˆ
EBQ  of   from (2-17), (3-16), (3-17) and 

(3-18) respectively.  

Step (9): We repeat the above steps 10000 times. We then com-

pute the Mean Square Error (MSE) for the estimates for different 

censoring schemes and given values of , ,c s  where 

 
10000

2

1

1ˆ ˆ( ) ( )
10000

i
i

MSE   


   

 

And ̂  stands for an estimator of  . The simulation results are 

displayed in Table 1. 

 

Table 1: Averaged Values of Mses. for Estimates of the Parameter   

ˆ
EBQ  ˆ

BQ  ˆ
EBD  ˆ

BD  ˆ
EBL  ˆ

BL  ˆ
EBS  ˆ

BS  r  n  

0.051310 

0.051905 

0.038029 

0.037960 

0.041034 

0.041107 

0.041169 

0.041319 15 25 0.051898 0.037973 0.041116 0.041325 

0.052425 0.037959 0.041243 0.041518 

0.024211 

0.024482 

0.019083 

0.018846 

0.019921 

0.019811 

0.019775 

0.019724 20 25 0.024480 0.018856 0.019818 0.019734 
0.024780 0.018664 0.019749 0.019717 

0.064023 

0.064420 

0.051566 

0.051751 

0.054761 

0.055003 

0.055128 

0.055392 25 40 0.064414 0.051751 0.055002 0.055390 
0.064817 0.051951 0.055257 0.055666 

0.012577 

0.012707 

0.102657 

0.010224 

0.010674 

0.010673 

0.010677 

0.010693 35 40 0.012706 0.010221 0.010674 0.010693 
0.012844 0.010188 0.010684 0.010721 

0.059339 

0.059586 

0.051549 

0.051740 

0.053654 

0.053860 

0.053963 

0.054174 45 70 0.059584 0.051739 0.053859 0.054172 
0.059831 0.051932 0.054067 0.054385 

0.018092 

0.018230 

0.014932 

0.015019 

0.015709 

0.015811 

0.015862 

0.015968 55 70 0.018229 0.015019 0.015810 0.015968 
0.018369 0.015110 0.015915 0.016076 

0.020795 

0.020908 

0.018058 

0.018148 

0.018765 

0.018861 

0.018910 

0.019008 75 100 0.020908 0.018148 0.018861 0.019008 

0.021022 0.018240 0.018959 0.019107 

0.006672 
0.006728 

0.005871 
0.005618 

0.005838 
0.005875 

0.005894 
0.005934 90 100 0.006727 0.005618 0.005875 0.005934 

0.006784 0.005607 0.005914 0.005975 

 

6. Conclusion remarks 

 We can conclude based on the results shown in Table 1, the 

E-Bayesian estimates of   under SELF, DLF and QLF 

have smaller MSE as compared with the corresponding 

Bayes estimates in all cases. On the other hand, the E-

Bayesian estimates of   under LLF are more efficient the 

associated Bayes estimates in nearly all cases except for 

40, 35n r  where the Bayes estimates based on LLF are 

the best. 

 In comparing the different E-Bayesian estimates, we can 

deducted from the results shown in Table 1, that the effi-

ciency of the E-Bayesian estimates of ˆ ( 1, 2,3)ii   under 

SELF, LLF, DLF and QLF can be ordered due to having 

smaller MSE to be ˆ ˆ ˆ ˆ .EBD EBL EBS EBQ       

7. Appendix 

Proof of Proposition 1 

i) From (3-7), (3-8) and (3-9), we get 
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According to (A.1) and (A.2), we have  
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ii) From (A.1) and (A.2), we get 
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Thus, the proof is complete 

 

Proof of Proposition 2 

i) From (3-10), (3-11) and (3-12), we get 

 

2 1 3 2

2

2

ˆ ˆ ˆ ˆ

( )
( ) ln 1

2 1

2
ln 1

EBL EBL EBL EBL

H s c
H s

c H sr

s c H c
H s

c H

     

     
                 
   
     
           

                     

(A.3) 
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2 3 4
1

1

ln(1 ) ... ( 1) .
2 3 4

k
k

k
k

x x x x
x x






       
 

 

Assuming 
c

x
H

  when 0 , 0 1,
c

c H
H

     we obtain 

 

2 2( )
ln 1 ( ) ln 1

H c H s c
H H s s

c H c H s

         
                                

 

 
2 2 3 4 5

3 4 52
...

3 4 52

H c c c c c
s H

c H H H HH

   
          

    
 

 
2 3

2 32

4 5

4 5

2( ) 3( )( )
( )

...
4( ) 5( )

c c c

H s H s H sH s
H s

c c c

H s H s

 
  

            
     

   

 

 
2 3

4

2 3

2 3 4 5

2 3 4

...
2 3 4 5

...
2 3 4 5

cc c c
s H

H H H

c c c c
c

H H H H

 
       

  

 
      
  

 

 
2 3 4

2 3
( ) ...

2 3( ) 4( ) 5( )

c c c c
H s

H s H s H s

 
       

    
 

 
2 3 4 5

2 3 4
...

2( ) 3( ) 4( ) 5( )

c c c c
c

H s H s H s H s

 
      

     
 

 
2 3 4

2 3

2 3 4 5

2 3 4

...
2 3 4 5

...
2 3 4 5

c c c c
s H

H H D

c c c c
c

H H H H

      

     

 

 
2 3 4

2 3
...

2 3( ) 4( ) 5( )

c c c c
H s

H s H s H s
      

  
 

 
2 3 4 5

2 3 42( ) 3( ) 4( ) 5( )

c c c c
c

H s H s H s H s
    

   
 

 
2 3 4

2 3

1 1 1 1 1 1
...

3 2 4 3 5 4

c c c

H H H

     
           
     

 

 
2 3

2

4

3

1 1 1 1

3 2 ( ) 4 3 ( )

1 1
...

5 4 ( )

c c

H s H s

c

H s

   
      

    

 
   

 

 

 

2 3

2 3

2 3 4

2 3

4
...

6 12 20

...
6( ) 12( ) 20( )

c c c

H H H

c c c

H s H s H s


   

   
  

 

 
2 2

2

2 2

2

1
...

2( ) 3 6( ) 10( )

1
...

2 3 6 10

c c c

H s H s H s

c c c

H H H

 
    

    

 
    

  

                                

(A.4) 

 

According to (A.3) and (A.4), we have  
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ii) From (A.3) and (A.4), we get 
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That is 1 2 3
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Thus, the proof is complete 

Proof of Proposition 3 

i) From (3-13), (3-14) and (3-15), we obtain  
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Substituting from (A.2) in (A.5), we get 
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According to (A.5) and (A.6), we have 
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That is 1 2 3
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Thus, the proof is complete 

Proof of Proposition 4 

i) From (3-16), (3-17) and (3-18) that 
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Substituting from (A.2) in (A.7), we get 
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According to (A.7) and (A.8), we have 
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That is 3 2 1
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ii) From (A.7) and (A.8), we get 
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Thus, the proof is complete 
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