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Abstract

Based on an adequate new Gel’fand triple, we construct the infinite dimensional free Gaussian white noise measure µ using the
Bochner-Minlos theorem. Next, we give the chaos decomposition of an L2 space with respect to the measure µ .
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1. Introduction

White noise analysis has been developed into a useful tool in infinite
dimensional analysis and the interest in this field has grown at an
explosive rate due to the large number of their application’s domains
such as quantum physics and in the theory of stochastic systems. It is
a well-known fact that, in contrary to the finite dimensional analysis,
no measure exists in infinite dimension which has the properties of
the Lebesgue measure. However, the so-called Gaussian measures
form one of the important and useful class of measures on infinite
dimensional space, which have many similar properties to those of
the Lebesgue one.
In the q-theory, the q-deformation of the Gaussian distribution was
given in [5], in particular for q=0, we obtain the free case, dν(x) =

1
2Π

√
4− x2dx, | x |≤ 2, called the Wigner semicircle measure or the

free Gaussian measure.
This paper is organized as follows: in Section 2, we give this measure
with parameter (σ ∈ R) in order to calculate its Fourier transform
by using the Bessel function, we find

ν̂σ (x) =
∫
R

eixtdνσ (t) = j1(2σx), x ∈ R,

we use the Wigner semicircle functions and the differential equa-
tion satisfied by the Chebychev polynomials of the second kind to
construct a standard nuclear triple

E :=
⋂
p≥0

Ep ⊂ H ⊂
⋃
p≥0

E−p := E ′.

Then by using the Bochner-Minlos theorem, we define the infinite
dimensional Wigner semicircle (or free Gaussian) white noise mea-
sure µ on (E ′,B(E ′)). Finally, in Section 3, we give the chaos
decomposition of the space L2(E ′,µ).

2. Wigner semicircle White Noise space

Let νσ be the Wigner semicircle distribution with parameter σ ∈ R
(called also generalized free Gaussian distribution) given by{

dνσ (x) = 1
2Π|σ |

√
4− ( x2

σ 2 )χe−2|σ |,2|σ |ddx
dν0(x) = δ0(x),

(1)

where δ0 is the Dirac measure on the point 0.
For n = 0,1,2, ..., the Chebychev polynomials of the second Kind
Un(x) are defined by the relation sin(n+1)θ

sinθ
=Un(cosθ). For normal-

ization we set:

Pn(x) =Un(
x
2
),n = 0,1,2, ....,

then {Pn(x)} is a sequence of orthogonal polynomials associated
with the Wigner semicircle law

dν(x) =
1

2Π

√
4− x2dx, | x |≤ 2,

and satisfy the following recursion formula

xPn(x) = Pn+1(x)+Pn−1(x).

The Bessel function of the Kind of order α > −1
2 can be defined by

Jα (x) = (
x
2
)α

+∞

∑
k=0

(−1)k

k!Γ(α + k+1)
(

x
2
)2k, x > 0. (2)

Moreover, we have the following Poisson-Mehler integral represen-
tation

Jα (x) =
1

√
πΓ(α + 1

2 )
(

x
2
)α

∫ 1

−1
(1− t2)α− 1

2 eixtdt.

The normalized Bessel function of order α > −1
2 is given by

jα (x) =

{
2α Γ(α +1) Jα (x)

xα i f x 6= 0
1 i f x = 0.

(3)
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It is easy to see that the Fourier transform of the Wigner semicircle
distribution with parameter σ is

ν̂σ (x) =
∫
R

eixtdνσ (t) = j1(2σx), x ∈ R.

One can check the second equality by direct verification or by using
(2) and (3). On the other hand, since

∫ 2
−2 Pn(x)Pm(x)dν(x) = δn,m,

the corresponding Wigner semicircle functions en(x) defined by

en(x) = (
4− x2

4
)

1
4 Pn(x),

form an orthonormal basis {en, n ∈ N} of H := L2(I,dx), with
I =]−2,2[. Define the operator A on H, by

A = (
x2−4

4
)

d2

dx2 + x
d
dx
− 1

4
(

x2

x2−4
)+3.

Then the Wigner semicircle functions en are eigenvectors of A,
namely,
Aen = λnen, where λn = 4n(n+2)− 1

8 , n = 0,1,2, ....
This can be shown by using the differential equation

P′′n (x)−
12x

4− x2 P′n(x)+
16n(n+2)

4− x2 Pn(x) = 0.

Moreover, for any p > 1
4 , A−p is Hilbert-shmidt operator satisfying

‖ A−p ‖H.S=
∞

∑
n=0

λ
−2p
n < ∞.

Now, for each p ∈ R define a norm | . |p on H by

| f |p=| Ap f |0=
( ∞

∑
n=0

λ
2p
n < f ,en >

2) 1
2 , f ∈ H

where | . |0 and < ., . > are, respectively, the norm and the inner
product of H. For p≥ 0, let Ep be the Hilbert space consisting of all
f ∈ H with | f |p< ∞ and E−p the completion of H with respect to
| . |−p. Since A−1 is of Hilbert-Schmidt type, identifying H with its
dual space we come to the real standard nuclear triple

E :=
⋂
p≥0

Ep ⊂ H ⊂
⋃
p≥0

E−p := E ′.

Being compatible to the inner product of H, the canonical bilinear
form on E ′×E is denoted by < ., . > again.

Lemma 1. The function

C(ϕ) = j1(2 < ϕ >),ϕ ∈ E (4)

is a characteristic function on E, where < ϕ >=
∫

I ϕ(x)dx.

Proof. Obviously C is continuous on E and C(0)= 1. We shall prove
that C is positive definite. Given α1,α2, ...αn ∈C and ϕ1,ϕ2, ...,ϕn ∈
E we have

n

∑
l,k=1

αlαkC(ϕl −ϕk) =
n

∑
l,k=1

αlαk j1(2 < ϕl −ϕk >)

=
n

∑
l,k=1

αlαk
1
Π

∫ −1

−1
(1− t2)

1
2 ei2t<ϕl−ϕk>dt

=
1
Π

∫ −1

−1
(1− t2)

1
2 | At |2 dt ≥ 0

where At = ∑
n
k=1 αkexp(it < 2ϕk >).

An application of the Bochner-Minlos theorem leads us to the fol-
lowing.

Definition 1. The probability measure µ on E ′, of which charac-
teristic function is C given by equation (4), is called the Wigner
semicircle white noise measure or the generalized free Gaussian
white noise measure. The probability space (E ′,µ) is called the
generalized free Gaussian white noise space.

Proposition 1. For ξ ∈ E, let Xξ be the random variable defined on
(E ′,B(E ′),µ), by Xξ (ω) :=< ω,ξ >
where B(E ′) is the cylinder σ -algebra on E ′. Then Xξ has a Wigner
semicircle distribution with parameter < ξ >.

Proof. by using equations (2), (3) and (4), we have∫
E ′ e

iλXξ (ω)dµ(ω) = j1(< 2λξ >) = ν̂<ξ>(λ ), λ ∈ R λ ∈ R
then the result is deduced.

3. Chaos Decomposition of the white noise
wigner semicircle space:

Let L2(E ′,µ) be the real Hilbert space of square µ−integrable func-
tion with norm denoted by ‖ . ‖0.

Lemma 2. The measure µ satisfies the moment condition:∫
E ′

< ω,ξ >n dµ(ω)< ∞.

More precisely, for ξ ∈ E and n ∈ N, we have:∫
E ′

< ω,ξ >2n dµ(ω) =
(2n)!

n!(n+1)!
< ξ >2n

and ∫
E ′

< ω,ξ >2n+1 dµ(ω) = 0.

Proof. By using Proposition 1 we get∫
E ′

< ω,ξ >2n dµ(ω) =
∫
R

x2ndν<ξ>(x) =
(2n)!

n!(n+1)!
< ξ >2n .

This proves the first statement. The second is obvious from the
symmetry of the measure ν<ξ>.

From the above lemma, the linear function ω 7−→ Xξ (ω), ξ ∈ E
belongs to L2(E ′,µ). Now introduce polynomial functions on the
white noise Wigner semicircle space (E ′,µ). Let Pn(E ′) be the
space of finite linear combinations of functions of the form
ω 7−→< ω,ξ1 > ... < ω,ξn >=< ω⊗n,ξ1 ⊗ ... ⊗ ξn >, ω ∈
E ′, ξ1, ...,ξn ∈ E.
An element of the algebraic sums
P(E ′) = ∑

∞
n=0 Pn(E ′)

is called a polynomial on the space (E ′,µ). From the equation one
can see that the nuclear space E ′ is closed under the absolute value.
This enable us to introduce a wick product in the following way

Definition 2. For ω ∈ E ′ and n = 0,1,2, ..., we define the wick
product : ω⊗n :∈ E ′⊗̂n as the linear functional on E⊗̂n characterized
by

<: ω
⊗n :,ϕ⊗n >=| ϕ |n0 Pn(

< ω, | ϕ |>
<| ϕ |>

), ϕ ∈ E ′ (5)

and for any orthogonal vectors ξ1, ...,ξk ∈ E ′ and nonnegative inte-
gers n j’s such that n1 + ...+nk = n, we have

<: ω
⊗n :,ξ⊗n1

1 ⊗̂...⊗̂ξ
⊗nk
k >=<: ω

⊗n1 :,ξ⊗n1
1 > ...<: ω

⊗nk :,ξ⊗nk
k > .

(6)
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Lemma 3. We have the following statements:

1.
∫

E ′
<: ω

⊗n :,ξ⊗n ><: ω
⊗m :,ξ⊗m > dµ(ω)=| ξ |2n

0 δm,n, ξ ∈E.

(7)

2.
∫

E ′
<: ω

⊗m :,ξ⊗m ><: ω
⊗n :,η⊗n > dµ(ω) =

< ξ ,η >n
δm,n, ξ ,η ∈ E. (8)

3. For all φn,ψn ∈ E⊗̂n,we have∫
E ′

<: ω
⊗n :,φn ><: ω

⊗m :,ψm > dµ(ω) =< φn,ψn > δm,n.

Proof. 1. For ξ ∈ E,ξ 6= 0, the image of the Wigner semicircle
white noise measure µ under the map

ω 7−→< ω,
ξ

<| ξ |>
>∈ R, ω ∈ E ′

is the Wigner semicircle distribution ν . Then we have∫
E ′

<: ω
⊗n :,ξ⊗n >< : ω

⊗m :,ξ⊗m > dµ(ω)

= | ξ |n+m
0

∫
I
Pn(t)Pm(t)dν(t) =| ξ |2n

0 δm,n.

2. It is sufficient to prove the identity under the assumption | ξ |0=
| η |0= 1. Taking a unit vector ζ ∈ E such that < ξ ,ζ >= 0, we
may write η = αξ +λζ , α2 +λ 2 = 1, and we have

<: ω
⊗n :,η⊗n >=

∑
n
k=0(

n
k

)αn−kλ k <: ω⊗(n−k) :,ξ⊗(n−k) ><: ω⊗k >:,ζ⊗k > .

Then we get∫
E ′

<: ω
⊗m :,ξ⊗m ><: ω

⊗n :,η⊗n > dµ(ω)

=
n

∑
k=o

(
n
k

)αn−k
λ

k

∫
E ′
<: ω

⊗m :,ξ⊗m ><: ω
⊗(n−k) :,ξ⊗(n−k)><: ω

⊗k :,ζ⊗k > dµ(ω).

On the other hand, by using the independence of the two random
variables < .,ξ > and < .,ζ >, we obtain∫

E ′
<: ω

⊗m :,ξ⊗m ><: ω
⊗(n−k) :,ξ⊗(n−k) >

<: ω
⊗k :,ζ⊗k > dµ(ω)

=
∫

E ′
<: ω

⊗m :,ξ⊗m ><: ω
⊗(n−k) :,ξ⊗(n−k) > dµ(ω)∫

E ′
<: ω

⊗k :,ζ⊗(n−k) > dµ(ω)
∫

E ′
<: ω

⊗k :,ζ⊗k > dµ(ω)

therefore the last integral is equal to 1 if k=0. Hence,∫
E ′

<: ω
⊗m :,ξ⊗m ><: ω

⊗n :,η⊗n > dµ(ω)

= α
n
∫

E ′
<: ω

⊗m :,ξ⊗m ><: ω
⊗n :,ξ⊗n > dµ(ω).

Applying the statement 1 of Lemma 3, we conclude that∫
E ′

<: ω
⊗m :,ξ⊗m ><: ω

⊗m ><: ω
⊗n :,η⊗n > dµ(ω) = α

n
δm,n,

since α =< ξ ,η > we have complete the proof of the statement 2.

3. The statement follows from the second assertion by considering
φn and ψn as linear combination of elements of the form ξ⊗n,ξ ∈
E.

Proposition 2. For two polynomials φ ,ψ; given respectively by

φ(ω) =
∞

∑
n=0

<: ω
⊗n :,φn >, ψ(ω) =

∞

∑
n=0

<: ω
⊗n :,ψn >,

it holds that ∫
E ′

φ(ω)ψ(ω)dµ(ω) =
∞

∑
n=0
〈φn,ψn〉

In particular, the L2−norm of φ , with respect to µ , is to µ , is given
by

‖ φ ‖2
0=

2

∑
n=0
| φn |20 .

Proof. The statement follows from Lemma 3.

The free Fock space F(H) over H is defined as the direct sum of the
n-th tensor power H⊗n, n ∈ N,

F(H) :=
+∞⊕
n=0

H⊗n.

F(H) consists of sequence
−→
f = ( f (0), f (1), ...) such that, for any

n ∈ N, f (n) ∈ H⊗n and ‖ −→f ‖2
F(H)= ∑

+∞

n=0 ‖ f (n) ‖2
H⊗n< ∞.

Theorem 1. For each F ∈ L2(E ′,µ), there exists a unique sequence
−→
f = ( f (n))∞

n=0 ∈ F(H) such that

F =
+∞

∑
n=0

<: .⊗n :, f (n) > (9)

in the L2−sense. Conversely, for any
−→
f = ( f (n))∞

n=0 ∈ F(H), (9)
defines a function on L2(E ′,µ). In that case,

‖ F ‖2
L2(E ′,µ)=

+∞

∑
n=0
‖ f (n) ‖2

H⊗n .

The following unitary operator is called the Wiener-Ito- isometry:
I : F(H)−→ L2(E ′,µ) ( f (n))∞

n=0 7−→ F

Proof. It is easy to see that the set

P(E ′) =

{φ ,φ(ω) =
n

∑
k=0

<: ω
⊗k :,φ (k) >,φ (k) ∈ E⊗̂n, ω ∈ E ′, n ∈ N}

of smooth continuous polynomials on E’ is continuously and densely
embedded in L2(E ′,µ). Then, for any F ∈ L2(E ′,µ), there exists a
unique sequence

−→
f = ( f (n))∞

n=0 ∈ F(H) such that
F = ∑

+∞

n=0 <: .⊗n :, f (n) > . It follows

‖ F ‖2
L2(E ′,µ) =

∫
E ′
(
+∞

∑
n=0

<: ω
⊗n :, f (n) >)2dµ(ω)

=
+∞

∑
n=0

< f (n), f (n) >H⊗n=‖ −→F ‖2
F(H)

where Proposition 2 is used into account. The second part of the
Theorem is straightforward.
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