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Abstract 
 

In this paper, we prove some common random fixed point theorems for mappings involving rational expression in the framework of met-

ric spaces endowed with a partial order using a class of pairs of functions satisfying certain assumptions. 
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1. Introduction 

Random nonlinear analysis is an important mathematical disci-

pline which is mainly concerned with the study of random nonlin-

ear operators and their properties and is much needed for the study 

of various classes of random equations. Of course famously ran-

dom methods have revolutionized the financial markets. Random 

fixed point theorems for random contraction mappings on separa-

ble complete metric spaces were first proved by Spacek [26] and 

Hans [8-9]. Random fixed point theorems for contraction map-

pings on separable complete metric spaces have been proved by 

several authors (Chang and Huang [5], Huang [11], Itoh [12], Liu 

[16], Papageorgiou [18-19] Shahzad and Latif [25], Tan et al. 

[27]). The stochastic version of the well-known Schauder’s fixed 

point theorem was proved by Sehgal and Singh [24]. 

The aim of this paper is to establish some random common fixed 

point theorems for mappings involving rational expression in the 

framework of metric spaces endowed with a partial order using a 

class of pairs of functions satisfying certain assumptions.  

 

2. Mathematical preliminaries 

The following preliminaries chosen from [13].  

Let (𝑋, 𝛽𝑋) be a separable Banach space, where 𝛽𝑋 is a 𝜎 -algebra 

of Borel subsets of  𝑋, and let (𝛺, 𝛽, 𝜇) denote a complete proba-

bility measure space with measure 𝜇 and 𝛽 be a 𝜎-algebra of sub-

sets of 𝛺 . A measurable mapping 𝜉: 𝛺 → 𝑋  is said to be an X-

valued random variable if the inverse image under the mapping x 
of every Borel set 𝐵 of 𝑋 belongs to 𝛽, that is, 𝜉−1(𝐵) ∈ 𝛽 for all 

𝐵 ∈ 𝛽𝑋 .A measurable mapping 𝜉: 𝛺 → 𝑋 is said to be a finitely-

valued random variable if it is constant on each finite number of 

disjoint sets  𝐴𝑖 ∈ 𝛽 and is equal to 0 on 𝛺 − (⋃ 𝐴𝑛
𝑖=1 ). 𝜉 is called 

a simple random variable if it is finitely valued and  

                                  𝜇{𝜔: ‖𝜉(𝜔)‖ > 0} < ∞. 

A measurable mapping  𝜉: 𝛺 → 𝑋  is said to be a strong random 

variable if there exists a sequence {𝜉𝑛(𝜔)} of simple random vari-

ables which converges to 𝜉(𝜔) almost surely, that is, there exists a 

set 𝐴0 ∈ 𝛽 with 𝜇(𝐴0) = 0 such that 𝑙𝑖𝑚𝑛→∞ 𝜉𝑛(𝜔) = 𝜉(𝜔), 𝜔 ∈

𝛺 − 𝐴0.  A measurable mapping  𝜉: 𝛺 → 𝑋  is said to be a weak 

random variable if the function 𝜉∗(𝜉(𝜔)) is a real-valued random 

variable for each 𝜉∗ ∈ 𝑋∗, the space 𝑋∗ denoting the first normed 

dual space of 𝑋. Let 𝑌 be another Banach space. A measurable 

mapping  𝑓 ∶ 𝛺 × 𝑋 → 𝑌  is said to be a random mapping if 

𝑓(𝜔, 𝜉)  =  𝑌(𝜔) is a Y-valued random variable for every 𝜉 ∈ 𝑋. 

A measurable mapping 𝑓 ∶ 𝛺 × 𝑋 → 𝑌 is said to be a continuous 

random mapping if the set of all  𝜔 ∈ 𝛺  for which 𝑓(𝜔, 𝜉)  is a 

continuous function of 𝜉  has measure one. A mapping 

ble  𝑓 ∶ 𝛺 × 𝑋 → 𝑌  is said to be demi-continuous at the 𝜉 ∈ 𝑋 

if  ‖𝜉𝑛 − 𝜉‖ → 0  implies 𝑓(𝜔, 𝜉𝑛)
weakly
→     𝑓(𝜔, 𝜉)  almost surely. 

An equation of the type 𝑓(𝜔, 𝜉(𝜔)) = 𝜉(𝜔), where 𝑓 ∶ 𝛺 × 𝑋 →
𝑋 is a random mapping, is called a random fixed point equation. 

Any measurable mapping 𝜉 ∶ 𝛺 → 𝑋  which satisfies the random 

fixed point equation 𝑓(𝜔, 𝜉(𝜔)) = 𝜉(𝜔) almost surely is said to 

be a wide sense solution of the fixed point equation. AnyX-valued 

random variable 𝜉(𝜔)  which satisfies 𝜇{𝜔 ∶ 𝑓(𝜔, 𝜉(𝜔)) =
𝜉(𝜔)} = 1 is said to be a random solution of the fixed point equa-

tion or a random fixed point of 𝑓. A measurable mapping 𝜉: 𝛺 →
𝑋 is called a random fixed point of a random operator 𝑓: 𝛺 × 𝑋 →

𝑋 if 𝜉(𝜔) = 𝑓(𝜔, 𝜉(𝜔)) for every 𝜔 ∈ 𝛺. A measurable mapping 

𝜉: 𝛺 → 𝑋  is called a random coincidence of random operators 

𝑇, 𝑓: 𝛺 × 𝑋 → 𝑋 if 𝑇(𝜔, 𝜉(𝜔)) = 𝑓(𝜔, 𝜉(𝜔)) for every𝜔 ∈ 𝛺. A 

measurable mapping 𝜉: 𝛺 → 𝑋 is called a random common fixed 

point of random operators 𝑇, 𝑓: 𝛺 × 𝑋 → 𝑋  if 𝑇(𝜔, 𝜉(𝜔)) =

𝑓(𝜔, 𝜉(𝜔)) = 𝜉(𝜔) for every 𝜔 ∈ 𝛺. 

Example 1 Let 𝑋 be the set of all real numbers and let 𝐸 be a non-

measurable subset of 𝑋. Let 𝑓:𝛺 × 𝑋 → 𝑌 be a random mapping 

defined as 𝑓(𝜔, 𝜉(𝜔), )  = 𝜉2(𝜔) + 𝜉(𝜔)– 1 for all 𝜔 ∈ 𝛺. In this 

case, the real-valued function 𝜉(𝜔), defined as 𝜉(𝜔)  =  1 for all 

𝜔 ∈ 𝛺, is a random fixed point of 𝑓. However, the real-valued 

function 𝑦(𝜔) defined as 

                                 𝑦(𝜔) = {
−1, 𝜔 ∉ 𝐸,
1 𝜔 ∈ 𝐸

 

Is a wide sense solution of the fixed point equation 𝑓(𝜔, 𝜉(𝜔)) =
𝜉(𝜔) without being a random fixed point of 𝑓. 

In this paper, we consider the following class of pairs of functions 

𝔉 (see [20]). 

http://creativecommons.org/licenses/by/3.0/
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Definition 2: A pair of functions (𝜑, 𝜙) is said to belong to the 

class 𝔉, if they satisfy the following conditions: 

(a1). 𝜑,𝜙: [0,∞) → [0,∞); 
(a2). For 𝑡, 𝑠 ∈  [0,∞), 𝜑(𝑡) ≤ 𝜙(𝑠) then 𝑡 ≤ 𝑠; 
(a3). For {𝑡𝑛} and {𝑠𝑛} sequence in [0,∞) such that 𝑙𝑖𝑚𝑛→∞ 𝑡𝑛 =

𝑙𝑖𝑚𝑛→∞ 𝑠𝑛 = 𝑎,  if 𝜑(𝑡𝑛) ≤ 𝜙(𝑠𝑛)  for any 𝑛 ∈ ℕ,  then 

𝑎 = 0. 

Remark 3 (see [20]) Note that, if (𝜑, 𝜙) ∈ 𝔉 and 𝜑(𝑡) ≤ 𝜙(𝑡), 
then 𝑡 = 0, since we can take 𝑡𝑛 = 𝑠𝑛 =  𝑡 for any 𝑛 ∈ ℕ and by 

(a3) we deduce that 𝑡 = 0. 

Example 4 The conditions (a1)-(a3) of the above definition are 

fulfilled for the functions 𝜑,𝜙 ∶ [0,∞) → [0,∞)  defined by 

𝜑(𝑡) = 𝑙𝑛 (
5𝑡+1

12
) and 𝜙(𝑡) = 𝑙𝑛 (

3𝑡+1

12
) for all 𝑡 ∈ [0,∞). 

In the sequel, we present some interesting examples of pairs of 

functions belonging to the class 𝔉 which will be very important in 

our study. 

Example 5 (see [20]) Let 𝜑 ∶ [0,∞)  → [0,∞)  be a continuous 

and increasing function such that 𝜑(𝑡) = 0 if and only if 𝑡 = 0 

(these functions are known in the literature as altering distance 

functions). Let 𝜙 ∶ [0,∞)  → [0,∞) be a non-decreasing function 

such that 𝜙(𝑡) = 0 if and only if 𝑡 = 0 and suppose that 𝜙 ≤ 𝜑. 

Then the pair (𝜑, 𝜑 − 𝜙) ∈ 𝔉.  

An interesting particular case is when φis the identity mapping, 

𝜑 =  1[0,∞)  and 𝜙: [0,∞) → [0,∞) is a non-decreasing function 

such that 𝜙(𝑡) = 0  if and only if 𝑡 = 0  and 𝜙(𝑡) ≤ 𝑡  for any 

𝑡 ∈ [0,∞). 
Example 6 (see [20]) Let 𝑆  be the class of functions defined 

by 𝑆 =  {𝛼 ∶ [0,∞) → [0, 1) ∶ {𝛼(𝑡𝑛) → 1 ⇒ 𝑡𝑛 → 0}} . Let us 

consider the pairs of functions (1[0,∞), 𝛼1[0,∞)), where 𝛼 ∈ 𝑆 and 

𝛼1[0,∞)  is defined by(𝛼1[0,∞))(𝑡)  =  𝛼(𝑡)𝑡,for 𝑡 ∈ [0,∞). Then 

(1[0,∞), 𝛼1[0,∞)) ∈ 𝔉. 

Remark 7 (see [20]) Suppose that 𝑔 ∶ [0,∞) → [0,∞) is an in-

creasing function and (𝜑, 𝜙) ∈ 𝔉. Then it is easily seen that the 

pair (𝑔 ∘ 𝜑, 𝑔 ∘ 𝜙) ∈ 𝔉.  

Definition 8 (see [4]) Let (𝑋,⪯) is a partially ordered set and 

𝑓 ∶ 𝑋 → 𝑋  is said to be monotone non-decreasing if for all, 

𝑦 ∈ 𝑋, 𝑥 ⪯ 𝑦 ⇒ 𝑓𝑥 ⪯ 𝑓𝑦.  

Definition 9 (see [2], [6]) Let (𝑋, ⪯) be a partially ordered set and 

𝑇 and 𝑓 be two self maps on 𝑋. An ordered pair (𝑇, 𝑓) is said to 

be weakly increasing if 𝑇𝑥 ⪯ 𝑓𝑇𝑥 and 𝑓𝑥 ⪯ 𝑇𝑓𝑥 for all 𝑥 ∈ 𝑋. 

 

3. Main results 
 

In this section, first we introduce the notion of monotone non-

decreasing and weakly increasing random operators. 
Definition 10 Let (𝑋, ⪯, 𝑑) is a partially ordered separable metric 

space.  

1) A random operator 𝑓:𝛺 × 𝑋 → 𝑋  is said to be monotone 

non-decreasing if for all 𝑥, 𝑦 ∈ 𝑋, 

            𝑥 ⪯ 𝑦 ⇒  𝑓(𝜔, 𝑥(𝜔)) ⪯ 𝑓(𝜔, 𝑦(𝜔)), 𝜔 ∈ 𝛺.  

2) Two random operators 𝑇, 𝑓: 𝛺 × 𝑋 → 𝑋 is said to be weakly 

increasing if  

              𝑇(𝜔, 𝑥(𝜔)) ⪯ 𝑓 (𝜔, 𝑇(𝜔, 𝑥(𝜔)))  

and        𝑓(𝜔, 𝑥(𝜔)) ⪯ 𝑇 (𝜔, 𝑓(𝜔, 𝑥(𝜔)))  

for all 𝑥 ∈ 𝑋 and 𝜔 ∈ 𝛺. 
 

Now, we give our main result. 

Theorem 11 Let (𝑋, ⪯) is a partially ordered set. Suppose that 

there exist a metric 𝑑 on X such that (𝑋, 𝑑) be a complete separa-

ble metric space and (𝛺, 𝛴, 𝜇) is a complete probability measure 

space. Let 𝑇, 𝑓: 𝛺 × 𝑋 → 𝑋 be two mappings such that 

(i) 𝑇(𝜔, . ) and 𝑓(𝜔, . ) are continuous for all 𝜔 ∈ 𝛺; 
(ii) 𝑇(. , 𝑥)  and 𝑓(. , 𝑥)  are measurable mapping for all 

𝑥 ∈ 𝑋; 
(iii) The pair (𝑇, 𝑓) is weakly increasing such that there ex-

ists a pair of functions (𝜑, 𝜙) ∈ 𝔉  satisfying for all 

comparable elements 𝑥, 𝑦 ∈ 𝑋, 

 𝜑 (𝑑(𝑇(𝜔, 𝑥), 𝑓(𝜔, 𝑦))) 

≤ 𝑚𝑎𝑥 {𝜙(𝑑(𝑥, 𝑦)), 𝜙 (
𝑑(𝑦,𝑓(𝜔,𝑦))[1+𝑑(𝑥,𝑇(𝜔,𝑥))]

1+𝑑(𝑥,𝑦)
)}      (1) 

Also suppose either  

a) 𝑇 or 𝑓 is continuous or  

b) 𝑋 has the following property:  

If {𝑥𝑛} is non-decreasing sequence in 𝑋 such that 𝑥𝑛 → 𝑢, 

then 𝑥𝑛 ⪯ 𝑢, for all 𝑛 ∈ ℕ.  

Then 𝑇 and 𝑓 have a common fixed point.  

Proof Let the function 𝜉0(𝜔): 𝛺 → 𝑋 be an arbitrary measurable 

mapping. We can define a sequence of measurable mappings 
{𝜉𝑛(𝜔)} from 𝛺 to 𝑋 as following: 

 𝜉2𝑛+1(𝜔) = 𝑇(𝜔, 𝜉2𝑛(𝜔)), 

 𝜉2𝑛+2(𝜔) = 𝑓(𝜔, 𝜉2𝑛+1(𝜔)), 𝜔 ∈ 𝛺, 𝑛 = 0, 1, 2,…                    (2) 

Since the pair (𝑇, 𝑓) is weakly increasing mappings, we have 

      𝜉1(𝜔) = 𝑇(𝜔, 𝜉0(𝜔)) ⪯ 𝑓 (𝜔, 𝑇(𝜔, 𝜉0(𝜔))) 

                                          = 𝑓(𝜔, 𝜉1(𝜔)) = 𝜉2(𝜔), 

      𝜉2(𝜔) = 𝑇(𝜔, 𝜉1(𝜔)) ⪯ 𝑓 (𝜔, 𝑇(𝜔, 𝜉1(𝜔))) 

                                          = 𝑓(𝜔, 𝜉2(𝜔)) = 𝜉3(𝜔), 
Continuing this process, we get 

     𝜉2𝑛+1(𝜔) = 𝑇(𝜔, 𝜉2𝑛(𝜔)) ⪯ 𝑓 (𝜔, 𝑇(𝜔, 𝜉2𝑛(𝜔))) 

                                                 = 𝑓(𝜔, 𝜉2𝑛+1(𝜔)) = 𝜉2𝑛+2(𝜔), 

 𝜉2𝑛+2(𝜔) = 𝑇(𝜔, 𝜉2𝑛+1(𝜔)) ⪯ 𝑓 (𝜔, 𝑇(𝜔, 𝜉2𝑛+1(𝜔))) 

                                                 = 𝑓(𝜔, 𝜉2𝑛+2(𝜔)) = 𝜉2𝑛+3(𝜔)   (3) 

Thus for all 𝑛 ≥ 1, we have 𝜉𝑛(𝜔) ⪯ 𝜉𝑛+1(𝜔). Without loss of 

the generality, we can assume that 𝜉𝑛(𝜔) ≠ 𝜉𝑛+1(𝜔)and since 

𝜉2𝑛(𝜔)  and 𝜉2𝑛+1(𝜔)  are comparable, applying the contractive 

condition (1), we have 

 𝜑 (𝑑(𝜉2𝑛+2(𝜔), 𝜉2𝑛+1(𝜔))) 

              = 𝜑 (𝑑 (𝑇(𝜔, 𝜉2𝑛+1(𝜔)), 𝑓(𝜔, 𝜉2𝑛(𝜔)))) 

              ≤ 𝑚𝑎𝑥 {𝜙 (𝑑(𝜉2𝑛+1(𝜔), 𝜉2𝑛(𝜔))), 

              𝜙(
𝑑(𝜉2𝑛(𝜔),𝑓(𝜔,𝜉2𝑛(𝜔)))[1+𝑑(𝜉2𝑛+1(𝜔),𝑇(𝜔,𝜉2𝑛+1(𝜔)))]

1+𝑑(𝜉2𝑛+1(𝜔),𝜉2𝑛(𝜔))
)} 

              = 𝑚𝑎𝑥 {𝜙 (𝑑(𝜉2𝑛+1(𝜔), 𝜉2𝑛(𝜔))) , 

              𝜙 (
𝑑(𝜉2𝑛(𝜔),𝜉2𝑛+1(𝜔))[1+𝑑(𝜉2𝑛+1(𝜔),𝜉2𝑛+2(𝜔))]

1+𝑑(𝜉2𝑛+1(𝜔),𝜉2𝑛(𝜔))
)}                 (4) 

Now, we can distinguish two cases.  

Case I. Consider  

       𝑚𝑎𝑥 {𝜙 (𝑑(𝜉2𝑛(𝜔), 𝜉2𝑛+1(𝜔))) , 

               𝜙 (
𝑑(𝜉2𝑛(𝜔),𝜉2𝑛+1(𝜔))[1+𝑑(𝜉2𝑛+1(𝜔),𝜉2𝑛+2(𝜔))]

1+𝑑(𝜉2𝑛+1(𝜔),𝜉2𝑛(𝜔))
)} 

              = 𝜙 (𝑑(𝜉2𝑛(𝜔), 𝜉2𝑛+1(𝜔)))                                           (5) 

In this case from (4), we have 

 𝜑 (𝑑(𝜉2𝑛+1(𝜔), 𝜉2𝑛+2(𝜔))) ≤ 𝜙 (𝑑(𝜉2𝑛(𝜔), 𝜉2𝑛+1(𝜔)))        (6) 

Since (𝜑, 𝜙) ∈ 𝔉, we deduce that 

      𝑑(𝜉2𝑛+1(𝜔), 𝜉2𝑛+2(𝜔)) ≤ 𝑑(𝜉2𝑛(𝜔), 𝜉2𝑛+1(𝜔)). 
Case II. If 

 𝑚𝑎𝑥 {𝜙 (𝑑(𝜉2𝑛(𝜔), 𝜉2𝑛+1(𝜔))) , 

         𝜙 (
𝑑(𝜉2𝑛(𝜔),𝜉2𝑛+1(𝜔))[1+𝑑(𝜉2𝑛+1(𝜔),𝜉2𝑛+2(𝜔))]

1+𝑑(𝜉2𝑛+1(𝜔),𝜉2𝑛(𝜔))
)} 

       = 𝜙 (
𝑑(𝜉2𝑛(𝜔),𝜉2𝑛+1(𝜔))[1+𝑑(𝜉2𝑛+1(𝜔),𝜉2𝑛+2(𝜔))]

1+𝑑(𝜉2𝑛+1(𝜔),𝜉2𝑛(𝜔))
)                       (7) 

In this case from (4), we have  

 𝜑 (𝑑(𝜉2𝑛+1(𝜔), 𝜉2𝑛+2(𝜔))) 

          ≤ 𝜙 (
𝑑(𝜉2𝑛(𝜔),𝜉2𝑛+1(𝜔))[1+𝑑(𝜉2𝑛+1(𝜔),𝜉2𝑛+2(𝜔))]

1+𝑑(𝜉2𝑛+1(𝜔),𝜉2𝑛(𝜔))
)                    (8) 

Since (𝜑, 𝜙) ∈ 𝔉, we get 

 𝑑(𝜉2𝑛+1(𝜔), 𝜉2𝑛+2(𝜔)) ≤
𝑑(𝜉2𝑛(𝜔),𝜉2𝑛+1(𝜔))[1+𝑑(𝜉2𝑛+1(𝜔),𝜉2𝑛+2(𝜔))]

1+𝑑(𝜉2𝑛+1(𝜔),𝜉2𝑛(𝜔))
 

Since 𝑑(𝜉2𝑛+1(𝜔), 𝜉2𝑛+2(𝜔)) ≠ 0,  from the last inequality, we 

have 

𝑑(𝜉2𝑛+1(𝜔), 𝜉2𝑛+2(𝜔)) ≤ 𝑑(𝜉2𝑛(𝜔), 𝜉2𝑛+1(𝜔)) 
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In both cases, we conclude that the sequence 

{𝑑(𝜉2𝑛(𝜔), 𝜉2𝑛+1(𝜔))} is a decreasing sequence of non-negative 

real numbers and is bounded below, there exists 𝑟(𝜔) ≥ 0 such 

that 

            𝑙𝑖𝑚𝑛→∞ 𝑑(𝜉2𝑛(𝜔), 𝜉2𝑛+1(𝜔)) = 𝑟(𝜔), 𝜔 ∈ 𝛺.                (9) 

Now, we shall show that 𝑟(𝜔) = 0.  

Denote  

𝐴 = {𝑛 ∈ ℕ ∶  𝑛 satisfies (5)}, 
𝐵 = {𝑛 ∈ ℕ ∶  𝑛 satisfies (7)}. 

By (4), we have 𝐶𝑎𝑟𝑑𝐴 = ∞ or 𝐶𝑎𝑟𝑑𝐵 = ∞. Let us suppose that 

𝐶𝑎𝑟𝑑𝐶 = ∞.Then there exists infinitely natural numbers 𝑛 satisfy-

ing inequality (6). Since (𝜑, 𝜙) ∈ 𝔉, we infer from (9) and condi-

tion (a3) that 𝑟(𝜔) = 0,𝜔 ∈ 𝛺. On the other hand, if 𝐶𝑎𝑟𝑑𝐵 = ∞, 
then from (4), we can find infinitely many 𝑛 ∈ ℕ satisfying ine-

quality (8). Since (𝜙, 𝜑) ∈ 𝔉, we obtain 

 𝑑(𝜉2𝑛+1(𝜔), 𝜉2𝑛+2(𝜔)) ≤
𝑑(𝜉2𝑛(𝜔),𝜉2𝑛+1(𝜔))[1+𝑑(𝜉2𝑛+1(𝜔),𝜉2𝑛+2(𝜔))]

1+𝑑(𝜉2𝑛+1(𝜔),𝜉2𝑛(𝜔))
 

For infinitely many 𝑛 ∈ ℕ. Letting the limit as 𝑛 → ∞ and taking 

into account that (9), we deduce that 𝑟(𝜔) ≤ 𝑟(𝜔)
1+𝑟(𝜔)

1+𝑟(𝜔)
 and 

consequently, we obtain 𝑟(𝜔) = 0,𝜔 ∈ 𝛺.Therefore, in both cases 

we have 

                𝑙𝑖𝑚𝑛→∞ 𝑑(𝜉2𝑛(𝜔), 𝜉2𝑛+1(𝜔)) = 0, 𝜔 ∈ 𝛺.                (10) 

Now, we will show that for 𝜔 ∈ 𝛺, {𝜉𝑛(𝜔)} is a Cauchy sequence, 

it is sufficient to prove that {𝜉2𝑛(𝜔)} is a Cauchy sequence. We 

proceed by negation, suppose that {𝜉2𝑛(𝜔)} is not a Cauchy se-

quence, then there exist 𝜖(𝜔) > 0 for which we can find two sub-

sequences of positive integers {𝑚𝑖} and {𝑛𝑖} for positive integer 𝑖, 
we 

   𝑚𝑖 > 𝑛𝑖 > 𝑖, 𝑑 (𝜉2𝑛𝑖(𝜔), 𝜉2𝑚𝑖(𝜔)) ≥ 𝜖(𝜔), 𝑖 ≥ 1, 𝜔 ∈ 𝛺      (11) 

Further, we can choose 𝑚𝑖 to be smallest integer with 𝑚𝑖 > 𝑛𝑖 for 

which (11) holds. Then 

                           𝑑 (𝜉2𝑛𝑖(𝜔), 𝜉2𝑚𝑖−2(𝜔)) < 𝜖(𝜔)                      (12) 

Using (10), (11) and the triangle inequality, we obtain 

   𝜖(𝜔) ≤ 𝑑 (𝜉2𝑛𝑖(𝜔), 𝜉2𝑚𝑖(𝜔)) 

            ≤ 𝑑 (𝜉2𝑛𝑖(𝜔), 𝜉2𝑚𝑖−2(𝜔)) + 𝑑 (𝜉2𝑚𝑖−2(𝜔), 𝜉2𝑚𝑖−1(𝜔)) 

            +𝑑 (𝜉2𝑚𝑖−1(𝜔), 𝜉2𝑚𝑖(𝜔)) 

            ≤ 𝜖(𝜔) + 𝑑 (𝜉2𝑚𝑖−2(𝜔), 𝜉2𝑚𝑖−1(𝜔)) 

            +𝑑 (𝜉2𝑚𝑖−1(𝜔), 𝜉2𝑚𝑖(𝜔))                                               (13) 

On letting the limit as 𝑖 → ∞ in the above inequality and using (9), 

we get 

              𝑙𝑖𝑚𝑖→∞ 𝑑 (𝜉2𝑛𝑖(𝜔), 𝜉2𝑚𝑖(𝜔)) = 𝜖(𝜔), 𝜔 ∈ 𝛺              (14) 

In addition, by the triangle inequality, we have 

       𝑑 (𝜉2𝑛𝑖(𝜔), 𝜉2𝑚𝑖(𝜔)) ≤ 𝑑 (𝜉2𝑛𝑖(𝜔), 𝜉2𝑛𝑖−1(𝜔)) 

                                            +𝑑 (𝜉2𝑛𝑖−1(𝜔), 𝜉2𝑚𝑖−1(𝜔)) 

                                            + 𝑑 (𝜉2𝑚𝑖−1(𝜔), 𝜉2𝑚𝑖(𝜔)) 

And 

 𝑑 (𝜉2𝑛𝑖−1(𝜔), 𝜉2𝑚𝑖−1(𝜔)) ≤ 𝑑 (𝜉2𝑛𝑖−1(𝜔), 𝜉2𝑛𝑖(𝜔)) 

                                             +𝑑 (𝜉2𝑛𝑖(𝜔), 𝜉2𝑚𝑖(𝜔)) 

                                             + 𝑑 (𝜉2𝑚𝑖(𝜔), 𝜉2𝑚𝑖−1(𝜔)) 

Letting the limit as 𝑖 → ∞ in the above two inequality, using (9) 

and (14), we get 

              𝑙𝑖𝑚𝑖→∞ 𝑑 (𝜉2𝑛𝑖−1(𝜔), 𝜉2𝑚𝑖−1(𝜔)) = 𝜖(𝜔), 𝜔 ∈ 𝛺      (15) 

Since 𝑚𝑖 > 𝑛𝑖  and 𝜉2𝑛𝑖−1(𝜔)  and 𝜉2𝑚𝑖−1(𝜔)  are comparable, 

then by contractive condition (1), we get 

 𝜑 (𝑑 (𝜉2𝑛𝑖(𝜔), 𝜉2𝑚𝑖(𝜔))) 

       = 𝜑(𝑑 (𝑇 (𝜔, 𝜉2𝑛𝑖−1(𝜔)) , 𝑓 (𝜔, 𝜉2𝑚𝑖−1(𝜔)))) 

       ≤ 𝑚𝑎𝑥 {𝜙 (𝑑 (𝜉2𝑛𝑖−1(𝜔), 𝜉2𝑚𝑖−1(𝜔))) , 

       𝜙(
𝑑(𝜉2𝑚𝑖−1

(𝜔),𝑓(𝜔,𝜉2𝑚𝑖−1
(𝜔)))[1+𝑑(𝜉2𝑛𝑖−1

(𝜔),𝑇(𝜔,𝜉2𝑛𝑖−1
(𝜔)))]

1+𝑑(𝜉2𝑛𝑖−1
(𝜔),𝜉2𝑚𝑖−1

(𝜔))
)} 

      = 𝑚𝑎𝑥 {𝜙 (𝑑 (𝜉2𝑛𝑖−1(𝜔), 𝜉2𝑚𝑖−1(𝜔))) , 

      𝜙(
𝑑(𝜉2𝑚𝑖−1

(𝜔),𝜉2𝑚𝑖
(𝜔))[1+𝑑(𝜉2𝑛𝑖−1

(𝜔),𝜉2𝑛𝑖
(𝜔))]

1+𝑑(𝜉2𝑛𝑖−1
(𝜔),𝜉2𝑚𝑖−1

(𝜔))
)}                     (16) 

Let us put  

     𝐶 = {𝑖 ∈ ℕ: 𝜑 (𝑑 (𝜉2𝑛𝑖(𝜔), 𝜉2𝑚𝑖(𝜔))) 

                                           ≤ 𝜙 (𝑑 (𝜉2𝑛𝑖−1(𝜔), 𝜉2𝑚𝑖−1(𝜔)))}, 

    𝐷 = {𝑖 ∈ ℕ:𝜑 (𝑑 (𝜉2𝑛𝑖(𝜔), 𝜉2𝑚𝑖(𝜔))) 

                     ≤ 𝜙(
𝑑(𝜉2𝑚𝑖−1

(𝜔),𝜉2𝑚𝑖
(𝜔))[1+𝑑(𝜉2𝑛𝑖−1

(𝜔),𝜉2𝑛𝑖
(𝜔))]

1+𝑑(𝜉2𝑛𝑖−1
(𝜔),𝜉2𝑚𝑖−1

(𝜔))
)} 

From (16), we have 𝐶𝑎𝑟𝑑𝐶 = ∞  or 𝐶𝑎𝑟𝑑𝐷 = ∞ . Let us sup-

posethat 𝐶𝑎𝑟𝑑𝐶 = ∞ . Then there exists infinitely many 𝑖 ∈ ℕ 

satisfying 

     𝜑 (𝑑 (𝜉2𝑛𝑖(𝜔), 𝜉2𝑚𝑖(𝜔))) ≤ 𝜙 (𝑑 (𝜉2𝑛𝑖−1(𝜔), 𝜉2𝑚𝑖−1(𝜔))) 

Since (𝜑, 𝜙) ∈ 𝔉, we infer from (14), (15) and condition (a3) that  

𝜖(𝜔) = 0. This is a contradiction.  

On the other hand, if 𝐶𝑎𝑟𝑑𝐷 = ∞, then we can find infinitely 

many 𝑖 ∈ ℕ satisfying  

    𝜑 (𝑑 (𝜉2𝑛𝑖(𝜔), 𝜉2𝑚𝑖(𝜔))) 

                       ≤ 𝜙(
𝑑(𝜉2𝑚𝑖−1

(𝜔),𝜉2𝑚𝑖
(𝜔))[1+𝑑(𝜉2𝑛𝑖−1

(𝜔),𝜉2𝑛𝑖
(𝜔))]

1+𝑑(𝜉2𝑛𝑖−1
(𝜔),𝜉2𝑚𝑖−1

(𝜔))
) 

and since (𝜑, 𝜙) ∈ 𝔉, we obtain  

     𝑑 (𝜉2𝑛𝑖(𝜔), 𝜉2𝑚𝑖(𝜔)) 

                      ≤
𝑑(𝜉2𝑚𝑖−1

(𝜔),𝜉2𝑚𝑖
(𝜔))[1+𝑑(𝜉2𝑛𝑖−1

(𝜔),𝜉2𝑛𝑖
(𝜔))]

1+𝑑(𝜉2𝑛𝑖−1
(𝜔),𝜉2𝑚𝑖−1

(𝜔))
 

Taking the limit as 𝑖 → ∞ in above inequality, using (9), (14) and 

(15), we obtain 𝜖(𝜔) ≤ 0 , which is a contradiction. Therefore, 

since in both possibilities 𝐶𝑎𝑟𝑑𝐶 = ∞, and 𝐶𝑎𝑟𝑑𝐷 = ∞, we ob-

tain a contradiction, we deduce that {𝜉2𝑛(𝜔)}  is a Cauchy se-

quence in 𝑋 and so is {𝜉𝑛(𝜔)}, then there exists 𝜉(𝜔): 𝛺 → 𝑋 such 

that 

                            𝑙𝑖𝑚𝑛→∞ 𝜉𝑛(𝜔) = 𝜉(𝜔).                                   (17) 

Now, if 𝑇 is continuous, then       

            𝜉(𝜔) = 𝑙𝑖𝑚𝑛→∞ 𝜉2𝑛+1(𝜔) 

                     = 𝑙𝑖𝑚𝑛→∞ 𝑇(𝜔, 𝜉2𝑛(𝜔)) = 𝑇(𝜔, 𝜉(𝜔)).               (18)  

Also since 𝜉(𝜔) ⪯ 𝜉(𝜔), applying contractive condition (1) and 

using (18), we have 

   𝜑 (𝑑 (𝜉(𝜔), 𝑓(𝜔, 𝜉(𝜔)))) 

                    = 𝜑 (𝑑 (𝑇(𝜔, 𝜉(𝜔)), 𝑓(𝜔, 𝜉(𝜔)))) 

                    ≤ 𝑚𝑎𝑥 {𝜙 (𝑑(𝜉(𝜔), 𝜉(𝜔))) , 

                                  𝜙(
𝑑(𝜉(𝜔),𝑓(𝜔,𝜉(𝜔)))[1+𝑑(𝜉(𝜔),𝑇(𝜔,𝜉(𝜔)))]

1+𝑑(𝜉(𝜔),𝜉(𝜔))
)} 

                     = 𝑚𝑎𝑥 {𝜙(0), 𝜙 (𝑑 (𝜉(𝜔), 𝑓(𝜔, 𝜉(𝜔))))}           (19) 

Consider 

               𝑚𝑎𝑥 {𝜙(0), 𝜙 (𝑑 (𝜉(𝜔), 𝑓(𝜔, 𝜉(𝜔))))} = 𝜙(0) 

Then from (19), we have 

                         𝜑 (𝑑 (𝜉(𝜔), 𝑓(𝜔, 𝜉(𝜔)))) ≤ 𝜙(0) 

Since (𝜑, 𝜙) ∈ 𝔉, we infer that 𝑑 (𝜉(𝜔), 𝑓(𝜔, 𝜉(𝜔))) = 0 and so 

𝜉(𝜔) = 𝑓(𝜔, 𝜉(𝜔)). 
Consider  

       𝑚𝑎𝑥 {𝜙(0), 𝜙 (𝑑 (𝜉(𝜔), 𝑓(𝜔, 𝜉(𝜔))))} 

                                        = 𝜙 (𝑑 (𝜉(𝜔), 𝑓(𝜔, 𝜉(𝜔)))) 
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Then from (19), we have 

𝜑 (𝑑 (𝜉(𝜔), 𝑓(𝜔, 𝜉(𝜔)))) ≤ 𝜙 (𝑑 (𝜉(𝜔), 𝑓(𝜔, 𝜉(𝜔)))) 

Since (𝜑, 𝜙) ∈ 𝔉, by Remark 3, we deduce that 

                          𝑑 (𝜉(𝜔), 𝑓(𝜔, 𝜉(𝜔))) = 0 

and so 𝜉(𝜔) = 𝑓(𝜔, 𝜉(𝜔)). In both cases, we obtain 

                         𝜉(𝜔) = 𝑓(𝜔, 𝜉(𝜔))                                           (20) 

From (18) and (20), we have 

𝜉(𝜔) = 𝑓(𝜔, 𝜉(𝜔)) = 𝑇(𝜔, 𝜉(𝜔)) 
Similarly, we obtain the same result if 𝑓is continuous.  

Now, if the condition (b) is satisfied. Since 𝑙𝑖𝑚𝑛→∞ 𝜉2𝑛−1(𝜔) =
𝜉(𝜔), then we have 𝜉2𝑛−1(𝜔) ⪯ 𝜉(𝜔). Thus, by (1), we have 

  𝜑 (𝑑 (𝜉2𝑛, 𝑓(𝜔, 𝜉(𝜔)))) 

        = 𝜑 (𝑑 (𝑇(𝜔, 𝜉2𝑛−1), 𝑓(𝜔, 𝜉(𝜔)))) 

        ≤ 𝑚𝑎𝑥 {𝜙 (𝑑(𝜉2𝑛−1, 𝜉(𝜔))) , 

                     𝜙(
𝑑(𝜉(𝜔),𝑓(𝜔,𝜉(𝜔)))[1+𝑑(𝜉2𝑛−1,𝑇(𝜔,𝜉2𝑛−1))]

1+𝑑(𝜉2𝑛−1,𝜉(𝜔))
)}           (21) 

Put 

   𝐸 = {𝑛 ∈ ℕ ∶ 𝜑 (𝑑 (𝜉2𝑛, 𝑓(𝜔, 𝜉(𝜔)))) ≤ 𝜙 (𝑑(𝜉2𝑛−1, 𝜉(𝜔)))}, 

   𝐹 = {𝑛 ∈ ℕ ∶ 𝜑 (𝑑 (𝜉2𝑛, 𝑓(𝜔, 𝜉(𝜔)))) 

                                  ≤ 𝜙(
𝑑(𝜉(𝜔),𝑓(𝜔,𝜉(𝜔)))[1+𝑑(𝜉2𝑛−1,𝑇(𝜔,𝜉2𝑛−1))]

1+𝑑(𝜉2𝑛−1,𝜉(𝜔))
)} 

From (21), we have 𝐶𝑎𝑟𝑑𝐸 = ∞ or 𝐶𝑎𝑟𝑑𝐹 = ∞ . Let us sup-

posethat 𝐶𝑎𝑟𝑑𝐸 = ∞ . Then there exists infinitely many 𝑛 ∈ ℕ 

satisfying 

𝜑 (𝑑 (𝜉2𝑛, 𝑓(𝜔, 𝜉(𝜔)))) ≤ 𝜙 (𝑑(𝜉2𝑛−1, 𝜉(𝜔))) 

Since(𝜑, 𝜙) ∈ 𝔉, we have 

𝑑 (𝜉2𝑛, 𝑓(𝜔, 𝜉(𝜔))) ≤ 𝑑(𝜉2𝑛−1, 𝜉(𝜔)) 

Letting the limit as 𝑛 → ∞ in above inequality and using (17), we 

have 𝑑 (𝜉(𝜔), 𝑓(𝜔, 𝜉(𝜔))) = 0 and consequently, 𝑓(𝜔, 𝜉(𝜔)) =

𝜉(𝜔). 
On the other hand, if 𝐶𝑎𝑟𝑑𝐹 = ∞, then we can find infinitely 

many 𝑖 ∈ ℕ satisfying  

        𝜑 (𝑑 (𝜉2𝑛, 𝑓(𝜔, 𝜉(𝜔)))) 

                             ≤ 𝜙(
𝑑(𝜉(𝜔),𝑓(𝜔,𝜉(𝜔)))[1+𝑑(𝜉2𝑛−1,𝑇(𝜔,𝜉2𝑛−1))]

1+𝑑(𝜉2𝑛−1,𝜉(𝜔))
) 

Where, to simplify our considerations, we will denote the subse-

quence by the same symbol 𝑇(𝜔, 𝜉2𝑛−1). By (2), (10) and (17), we 

have 

     𝑙𝑖𝑚𝑛→∞ (
𝑑(𝜉(𝜔),𝑓(𝜔,𝜉(𝜔)))[1+𝑑(𝜉2𝑛−1,𝑇(𝜔,𝜉2𝑛−1))]

1+𝑑(𝜉2𝑛−1,𝜉(𝜔))
) 

      = 𝑙𝑖𝑚𝑛→∞ (
𝑑(𝜉(𝜔),𝑓(𝜔,𝜉(𝜔)))[1+𝑑(𝜉2𝑛−1,𝜉2𝑛)]

1+𝑑(𝜉2𝑛−1,𝜉(𝜔))
) 

      = 𝑑 (𝜉(𝜔), 𝑓(𝜔, 𝜉(𝜔))) 

      = 𝑙𝑖𝑚𝑛→∞ 𝑑 (𝜉2𝑛, 𝑓(𝜔, 𝜉(𝜔)))                                             (22) 

Since (𝜙, 𝜑) ∈ 𝔉,  we infer from (22) and condition (a3) that 

𝑑 (𝜉(𝜔), 𝑓(𝜔, 𝜉(𝜔))) = 0 and consequently, 𝜉(𝜔) = 𝑓(𝜔, 𝜉(𝜔)). 

From the abovecase, we deduce that 𝜉(𝜔) = 𝑓(𝜔, 𝜉(𝜔)).  

Similarly, we can show that 𝜉(𝜔) = 𝑇(𝜔, 𝜉(𝜔)). The proof of the 

theorem is completed. 

 

By Theorem 11, we obtain the following corollaries. 

Corollary 12 Let (𝑋, ⪯) is a partially ordered set. Suppose that 

there exist a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) be a complete separa-

ble metric space and (𝛺, 𝛴, 𝜇)is a complete probability measure 

space. Let 𝑇, 𝑓: 𝛺 × 𝑋 → 𝑋 be two mappings such that 

(i) 𝑇(𝜔, . ) and 𝑓(𝜔, . ) are continuous for all 𝜔 ∈ 𝛺; 
(ii) 𝑇(. , 𝑥) and 𝑓(. , 𝑥) are measurable mapping for all 𝑥 ∈ 𝑋; 

(iii) The pair (𝑇, 𝑓)  is weakly increasing such that for all 

comparable elements 𝑥, 𝑦 ∈ 𝑋,satisfying  

        𝑑(𝑇(𝜔, 𝑥), 𝑓(𝜔, 𝑦)) ≤ 𝛼
𝑑(𝑦,𝑓(𝜔,𝑦))[1+𝑑(𝑥,𝑇(𝜔,𝑥))]

1+𝑑(𝑥,𝑦)
+ 𝛽𝑑(𝑥, 𝑦) 

                                                                                                     (23) 

where 𝛼, 𝛽 > 0 and 𝛼 + 𝛽 < 1. 

Also suppose either  

a) 𝑇 or 𝑓 is continuous or  

b) 𝑋 has the following property: 

If {𝑥𝑛} is non-decreasing sequence in 𝑋 such that 𝑥𝑛 → 𝑢, 

then 𝑥𝑛 ⪯ 𝑢, for all 𝑛 ∈ ℕ.  

Then 𝑇 and 𝑓 have a common fixed point.  

Proof: Since 

 𝑑(𝑇(𝜔, 𝑥), 𝑓(𝜔, 𝑦)) ≤ 𝛼
𝑑(𝑦,𝑓(𝜔,𝑦))[1+𝑑(𝑥,𝑇(𝜔,𝑥))]

1+𝑑(𝑥,𝑦)
+ 𝛽𝑑(𝑥, 𝑦) 

            ≤ (𝛼 + 𝛽)𝑚𝑎𝑥 {𝑑(𝑥, 𝑦),
𝑑(𝑦,𝑓(𝜔,𝑦))[1+𝑑(𝑥,𝑇(𝜔,𝑥))]

1+𝑑(𝑥,𝑦)
} 

            = 𝑚𝑎𝑥 {(𝛼 + 𝛽)𝑑(𝑥, 𝑦), (𝛼 + 𝛽)
𝑑(𝑦,𝑓(𝜔,𝑦))[1+𝑑(𝑥,𝑇(𝜔,𝑥))]

1+𝑑(𝑥,𝑦)
} 

for all comparable elements 𝑥, 𝑦 ∈ 𝑋, where 𝛼 + 𝛽 < 1. This con-

dition is a particular case of the contractive condition appearing in 

Theorem 11 with the pair of functions (𝜑, 𝜙) ∈ 𝔉 , given by 

𝜑 = 1[0,∞) and 𝜙 = (𝛼 + 𝛽)1[0,∞)(see Example 6).  

 

Corollary 13 Let (𝑋, ⪯) is a partially ordered set. Suppose that 

there exist a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) be a complete separa-

ble metric space and (𝛺, 𝛴, 𝜇)is a complete probability measure 

space. Let 𝑇, 𝑓: 𝛺 × 𝑋 → 𝑋 be two mappings such that 

(i) 𝑇(𝜔, . ) and 𝑓(𝜔, . ) are continuous for all 𝜔 ∈ 𝛺; 
(ii) 𝑇(. , 𝑥) and 𝑓(. , 𝑥) are measurable mapping for all 𝑥 ∈ 𝑋; 
(iii) The pair (𝑇, 𝑓) is weakly increasing such that there exists 

a pair of functions (𝜑, 𝜙) ∈ 𝔉 satisfying for all compara-

ble elements 𝑥, 𝑦 ∈ 𝑋, 

                𝜑 (𝑑(𝑇(𝜔, 𝑥), 𝑓(𝜔, 𝑦))) ≤ 𝜙(𝑑(𝑥, 𝑦))                      (24) 

Also suppose either  

a) 𝑇 or 𝑓 is continuous or  

b) 𝑋 has the following property: 

If {𝑥𝑛} is non-decreasing sequence in 𝑋 such that 𝑥𝑛 → 𝑢, 

then 𝑥𝑛 ⪯ 𝑢, for all 𝑛 ∈ ℕ.  

Then 𝑇 and 𝑓 have a common fixed point.  

 

Corollary 14 Let (𝑋, ⪯) is a partially ordered set. Suppose that 

there exist a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) be a complete separa-

ble metric space and (𝛺, 𝛴, 𝜇)is a complete probability measure 

space. Let 𝑇, 𝑓: 𝛺 × 𝑋 → 𝑋 be two mappings such that 

(i) 𝑇(𝜔, . ) and 𝑓(𝜔, . ) are continuous for all 𝜔 ∈ 𝛺; 
(ii) 𝑇(. , 𝑥) and 𝑓(. , 𝑥) are measurable mapping for all 𝑥 ∈ 𝑋; 
(iii) The pair (𝑇, 𝑓) is weakly increasing such that there exists 

a pair of functions (𝜑, 𝜙) ∈ 𝔉 satisfying for all compara-

ble elements 𝑥, 𝑦 ∈ 𝑋, 

       𝜑 (𝑑(𝑇(𝜔, 𝑥), 𝑓(𝜔, 𝑦))) ≤ 𝜙 (
𝑑(𝑦,𝑓(𝜔,𝑦))[1+𝑑(𝑥,𝑇(𝜔,𝑥))]

1+𝑑(𝑥,𝑦)
)    (25) 

Also suppose either  

a) 𝑇 or 𝑓 is continuous or  

b) 𝑋 has the following property: 

If {𝑥𝑛} is non-decreasing sequence in 𝑋 such that 𝑥𝑛 → 𝑢, 

then 𝑥𝑛 ⪯ 𝑢, for all 𝑛 ∈ ℕ.  

Then 𝑇 and 𝑓 have a common fixed point.  

 

Taking into account Example 5, we have the following corollary. 

Corollary 15 Let (𝑋, ⪯) is a partially ordered set. Suppose that 

there exist a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) be a complete separa-

ble metric space and (𝛺, 𝛴, 𝜇)is a complete probability measure 

space. Let 𝑇, 𝑓: 𝛺 × 𝑋 → 𝑋 be two mappings such that 

(i) 𝑇(𝜔, . ) and 𝑓(𝜔, . ) are continuous for all 𝜔 ∈ 𝛺; 
(ii) 𝑇(. , 𝑥) and 𝑓(. , 𝑥) are measurable mapping for all 𝑥 ∈ 𝑋; 
(iii) The pair (𝑇, 𝑓) is weakly increasing such that there exists 

a pair of functions (𝜑, 𝜙) ∈ 𝔉 satisfying for all compara-

ble elements 𝑥, 𝑦 ∈ 𝑋, 
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    𝜑 (𝑑(𝑇(𝜔, 𝑥), 𝑓(𝜔, 𝑦))) ≤ 𝑚𝑎𝑥{𝜑(𝑑(𝑥, 𝑦)) − 𝜙(𝑑(𝑥, 𝑦)), 

  𝜑 (
𝑑(𝑦,𝑓(𝜔,𝑦))[1+𝑑(𝑥,𝑇(𝜔,𝑥))]

1+𝑑(𝑥,𝑦)
) − 𝜙 (

𝑑(𝑦,𝑓(𝜔,𝑦))[1+𝑑(𝑥,𝑇(𝜔,𝑥))]

1+𝑑(𝑥,𝑦)
)}  (26) 

Also suppose either  

a) 𝑇 or 𝑓 is continuous or  

b) 𝑋 has the following property: 

If {𝑥𝑛} is non-decreasing sequence in 𝑋 such that 𝑥𝑛 → 𝑢, 

then 𝑥𝑛 ⪯ 𝑢, for all 𝑛 ∈ ℕ.  

Then 𝑇 and 𝑓 have a common fixed point.  

 

Corollary 15 has the following consequences. 

Corollary 16 Let (𝑋, ⪯) is a partially ordered set. Suppose that 

there exist a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) be a complete separa-

ble metric space and (𝛺, 𝛴, 𝜇)is a complete probability measure 

space. Let 𝑇, 𝑓: 𝛺 × 𝑋 → 𝑋 be two mappings such that 

(i) 𝑇(𝜔, . ) and 𝑓(𝜔, . ) are continuous for all 𝜔 ∈ 𝛺; 
(ii) 𝑇(. , 𝑥) and 𝑓(. , 𝑥) are measurable mapping for all 𝑥 ∈ 𝑋; 
(iii) The pair (𝑇, 𝑓) is weakly increasing such that there exists 

a pair of functions (𝜑, 𝜙) ∈ 𝔉 satisfying for all compara-

ble elements 𝑥, 𝑦 ∈ 𝑋, 

         𝜑 (𝑑(𝑇(𝜔, 𝑥), 𝑓(𝜔, 𝑦))) ≤ 𝜑(𝑑(𝑥, 𝑦)) − 𝜙(𝑑(𝑥, 𝑦))      (27) 

Also suppose either  

a) 𝑇 or 𝑓 is continuous or  

b) 𝑋 has the following property: 

If {𝑥𝑛} is non-decreasing sequence in 𝑋 such that 𝑥𝑛 → 𝑢, 

then 𝑥𝑛 ⪯ 𝑢, for all 𝑛 ∈ ℕ.  

Then 𝑇 and 𝑓 have a common fixed point.  

 

Corollary 17 Let (𝑋, ⪯) is a partially ordered set. Suppose that 

there exist a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) be a complete separa-

ble metric space and (𝛺, 𝛴, 𝜇)is a complete probability measure 

space. Let 𝑇, 𝑓: 𝛺 × 𝑋 → 𝑋 be two mappings such that 

(i) 𝑇(𝜔, . ) and 𝑓(𝜔, . ) are continuous for all 𝜔 ∈ 𝛺; 
(ii) 𝑇(. , 𝑥) and 𝑓(. , 𝑥) are measurable mapping for all 𝑥 ∈ 𝑋; 
(iii) The pair (𝑇, 𝑓) is weakly increasing such that there exists 

a pair of functions (𝜑, 𝜙) ∈ 𝔉 satisfying for all compara-

ble elements 𝑥, 𝑦 ∈ 𝑋, 

        𝜑 (𝑑(𝑇(𝜔, 𝑥), 𝑓(𝜔, 𝑦))) ≤ 𝜑 (
𝑑(𝑦,𝑓(𝜔,𝑦))[1+𝑑(𝑥,𝑇(𝜔,𝑥))]

1+𝑑(𝑥,𝑦)
) 

                                                 −𝜙 (
𝑑(𝑦,𝑓(𝜔,𝑦))[1+𝑑(𝑥,𝑇(𝜔,𝑥))]

1+𝑑(𝑥,𝑦)
)    (28) 

Also suppose either  

a) 𝑇 or 𝑓 is continuous or  

b) 𝑋 has the following property: 

If {𝑥𝑛} is non-decreasing sequence in 𝑋 such that 𝑥𝑛 → 𝑢, 

then 𝑥𝑛 ⪯ 𝑢, for all 𝑛 ∈ ℕ.  

Then 𝑇 and 𝑓 have a common fixed point.  

 

Taking into account Example 6, we have the following corollary. 

Corollary 18 Let (𝑋, ⪯) is a partially ordered set. Suppose that 

there exist a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) be a complete separa-

ble metric space and (𝛺, 𝛴, 𝜇)is a complete probability measure 

space. Let 𝑇, 𝑓: 𝛺 × 𝑋 → 𝑋 be two mappings such that 

(i) 𝑇(𝜔, . ) and 𝑓(𝜔, . ) are continuous for all 𝜔 ∈ 𝛺; 
(ii) 𝑇(. , 𝑥) and 𝑓(. , 𝑥) are measurable mapping for all 𝑥 ∈ 𝑋; 
(iii) The pair (𝑇, 𝑓) is weakly increasing such that such that 

there exists 𝛼 ∈ 𝑆 (see Example 6) satisfying for all com-

parable elements 𝑥, 𝑦 ∈ 𝑋, 

 𝑑(𝑇(𝜔, 𝑥), 𝑓(𝜔, 𝑦)) ≤ 𝑚𝑎𝑥{𝛼(𝑑(𝑥, 𝑦)) 𝑑(𝑥, 𝑦) 

         𝛼 (
𝑑(𝑦,𝑓(𝜔,𝑦))[1+𝑑(𝑥,𝑇(𝜔,𝑥))]

1+𝑑(𝑥,𝑦)
)
𝑑(𝑦,𝑓(𝜔,𝑦))[1+𝑑(𝑥,𝑇(𝜔,𝑥))]

1+𝑑(𝑥,𝑦)
         (29) 

Also suppose either  

a) 𝑇 or 𝑓 is continuous or  

b) 𝑋 has the following property:  

If {𝑥𝑛} is non-decreasing sequence in 𝑋 such that 𝑥𝑛 → 𝑢, 

then 𝑥𝑛 ⪯ 𝑢, for all 𝑛 ∈ ℕ.  

Then 𝑇 and𝑓 have a common fixed point.  

 

A consequence of Corollary 18 is the following corollary.  

Corollary 19 Let (𝑋, ⪯) is a partially ordered set. Suppose that 

there exist a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) be a complete separa-

ble metric space and (𝛺, 𝛴, 𝜇)is a complete probability measure 

space. Let 𝑇, 𝑓: 𝛺 × 𝑋 → 𝑋 be two mappings such that 

(i) 𝑇(𝜔, . ) and 𝑓(𝜔, . ) are continuous for all 𝜔 ∈ 𝛺; 
(ii) 𝑇(. , 𝑥) and 𝑓(. , 𝑥) are measurable mapping for all 𝑥 ∈ 𝑋; 
(iii) The pair (𝑇, 𝑓) is weakly increasing such that such that 

there exists 𝛼 ∈ 𝑆 (see Example 6) satisfying for all com-

parable elements 𝑥, 𝑦 ∈ 𝑋, 

                  𝑑(𝑇(𝜔, 𝑥), 𝑓(𝜔, 𝑦)) ≤ 𝛼(𝑑(𝑥, 𝑦))𝑑(𝑥, 𝑦)                (30) 

Also suppose either  

a) 𝑇 or 𝑓 is continuous or 

b) 𝑋 has the following property: 

If {𝑥𝑛} is non-decreasing sequence in 𝑋 such that 𝑥𝑛 → 𝑢, 

then 𝑥𝑛 ⪯ 𝑢, for all 𝑛 ∈ ℕ.  

Then 𝑇 and 𝑓 have a common fixed point.  

 

Corollary 20 Let (𝑋, ⪯) is a partially ordered set. Suppose that 

there exist a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) be a complete separa-

ble metric space and (𝛺, 𝛴, 𝜇)is a complete probability measure 

space. Let 𝑇, 𝑓: 𝛺 × 𝑋 → 𝑋 be two mappings such that 

(i) 𝑇(𝜔, . ) and 𝑓(𝜔, . ) are continuous for all 𝜔 ∈ 𝛺; 
(ii) 𝑇(. , 𝑥) and 𝑓(. , 𝑥) are measurable mapping for all 𝑥 ∈ 𝑋; 
(iii) The pair (𝑇, 𝑓) is weakly increasing such that such that 

there exists 𝛼 ∈ 𝑆 (see Example 6) satisfying for all com-

parable elements 𝑥, 𝑦 ∈ 𝑋, 

   𝑑(𝑇(𝜔, 𝑥), 𝑓(𝜔, 𝑦)) 

            ≤ 𝛼 (
𝑑(𝑦,𝑓(𝜔,𝑦))[1+𝑑(𝑥,𝑇(𝜔,𝑥))]

1+𝑑(𝑥,𝑦)
)
𝑑(𝑦,𝑓(𝜔,𝑦))[1+𝑑(𝑥,𝑇(𝜔,𝑥))]

1+𝑑(𝑥,𝑦)
 (31) 

Also suppose either  

a) 𝑇 or 𝑓 is continuous or  

b) 𝑋 has the following property: 

If {𝑥𝑛} is non-decreasing sequence in 𝑋 such that 𝑥𝑛 → 𝑢, 

then 𝑥𝑛 ⪯ 𝑢, for all 𝑛 ∈ ℕ.  

Then 𝑇 and 𝑓 have a common fixed point.  

 

Taking 𝑇 = 𝑓in Theorem 11, we obtain the following Corollary: 

Corollary 21 Let (𝑋, ⪯) is a partially ordered set. Suppose that 

there exist a metric 𝑑 on 𝑋 such that (𝑋, 𝑑) be a complete separa-

ble metric space and (𝛺, 𝛴, 𝜇)is a complete probability measure 

space. Let 𝑓:𝛺 × 𝑋 → 𝑋 be two mappings such that 

(i) 𝑓(𝜔, . ) is continuous for all 𝜔 ∈ 𝛺; 
(ii) 𝑓(. , 𝑥) is measurable mapping for all 𝑥 ∈ 𝑋; 
(iii) The pair 𝑇  is non-decreasing mapping such that 𝜉0 ≤

𝑓(𝜔, 𝜉0(𝜔)) and there exists a pair of functions (𝜑,𝜙) ∈

𝔉 satisfying for all comparable elements 𝑥, 𝑦 ∈ 𝑋, 

   𝜑 (𝑑(𝑓(𝜔, 𝑥), 𝑓(𝜔, 𝑦))) 

                ≤ 𝑚𝑎𝑥 {𝜙(𝑑(𝑥, 𝑦)), 𝜙 (
𝑑(𝑦,𝑓(𝜔,𝑦))[1+𝑑(𝑥,𝑓(𝜔,𝑥))]

1+𝑑(𝑥,𝑦)
)}   (32) 

Also suppose either  

a) 𝑓 is continuous or  

b) 𝑋 has the following property:  

If {𝑥𝑛} is non-decreasing sequence in 𝑋 such that 𝑥𝑛 → 𝑢, 

then 𝑥𝑛 ⪯ 𝑢, for all 𝑛 ∈ ℕ.  

Then 𝑇 has a fixed point.  

 

In what follows, we prove a sufficient condition for the unique-

ness of the fixed point in Corollary 21. 

Theorem 22 Suppose that: 

a) Hypothesis of Corollary 21 hold;  

b) For each measurable mappings 𝜂(𝜔), 𝜁(𝜔): 𝛺 → 𝑋,  there 

exists a measurable mapping 𝜉(𝜔): 𝛺 → 𝑋which is compa-

rable with both 𝜂(𝜔)and 𝜁(𝜔). 
Then 𝑓has a unique fixed point. 

Proof: By Corollary 21, 𝑓 has a fixed point. Now we prove that 

the uniqueness of the fixed point of 𝑓. Let 𝜂(𝜔) and 𝜁(𝜔)be two 

fixed points of 𝑓.  

We consider the following two cases: 
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Case.1 𝜂(𝜔) is comparable to 𝜁(𝜔). Then 𝑓𝑛(𝜔, 𝜂(𝜔)) is compa-

rable to 𝑓𝑛(𝜔, 𝜁(𝜔)) for all 𝑛 ∈ ℕ. Applying (1), we have 

    𝜑 (𝑑(𝜂(𝜔), 𝜁(𝜔))) 

        = 𝜑 (𝑑 (𝑓𝑛(𝜔, 𝜂(𝜔)), 𝑓𝑛(𝜔, 𝜁(𝜔)))) 

        ≤ 𝑚𝑎𝑥 {𝜙 (𝑑 (𝑓𝑛−1(𝜔, 𝜂(𝜔)), 𝑓𝑛−1(𝜔, 𝜁(𝜔)))) , 

        𝜙(
𝑑(𝑓𝑛−1(𝜔,𝜁(𝜔)),𝑓𝑛(𝜔,𝜁(𝜔)))[1+𝑑(𝑓𝑛−1(𝜔,𝜂(𝜔)),𝑓𝑛(𝜔,𝜂(𝜔)))]

1+𝑑(𝑓𝑛−1(𝜔,𝜂(𝜔)),𝑓𝑛−1(𝜔,𝜁(𝜔)))
)} 

       = 𝑚𝑎𝑥 {𝜙 (𝑑(𝜂(𝜔), 𝜁(𝜔))) , 𝜙 (
𝑑(𝜁(𝜔),𝜁(𝜔))[1+𝑑(𝜂(𝜔),𝜂(𝜔))]

1+𝑑(𝜂(𝜔),𝜁(𝜔))
)} 

       = 𝑚𝑎𝑥 {𝜙 (𝑑(𝜂(𝜔), 𝜁(𝜔))) , 𝜙(0)}                                    (33) 

Consider  

𝑚𝑎𝑥 {𝜙 (𝑑(𝜂(𝜔), 𝜁(𝜔))) , 𝜙(0)} = 𝜙 (𝑑(𝜂(𝜔), 𝜁(𝜔))), 

Then from (33), we have 

𝜑 (𝑑(𝜂(𝜔), 𝜁(𝜔))) ≤ 𝜙 (𝑑(𝜂(𝜔), 𝜁(𝜔))). 

Since (𝜙, 𝜑) ∈ 𝔉, we infer from Remark 3 that 𝑑(𝜂(𝜔), 𝜁(𝜔)) =

0 and so 𝜂(𝜔) =  𝜁(𝜔). 
If  

𝑚𝑎𝑥 {𝜙 (𝑑(𝜂(𝜔), 𝜁(𝜔))) , 𝜙(0)} = 𝜙(0), 

Then from (33), we have 

𝜑 (𝑑(𝜂(𝜔), 𝜁(𝜔))) ≤ 𝜙(0). 

Since (𝜙, 𝜑) ∈ 𝔉,  we infer from condition (a2) that 

𝑑(𝜂(𝜔), 𝜁(𝜔)) ≤ 0 and so 𝜂(𝜔) =  𝜁(𝜔).  
Therefore, in both cases we proved that 𝜂(𝜔) =  𝜁(𝜔). 
 

Case.2 𝜂(𝜔) is not comparable to 𝜁(𝜔). Then there exists a meas-

urable mapping 𝜉(𝜔): 𝛺 → 𝑋, which is comparable with both 

𝜂(𝜔)and 𝜁(𝜔).Now, we can define the sequence {𝜉𝑛(𝜔)} from  𝛺 

to 𝑋 as follows: 

𝜉0(𝜔) = 𝜉(𝜔), 𝜉𝑛+1(𝜔) = 𝑓(𝜔, 𝜉𝑛(𝜔)),𝜔 ∈ 𝛺, 𝑛 = 0, 1, 2, …  

where 𝜉0(𝜔): 𝛺 → 𝑋 be an arbitrary measurable mapping.  

Since 𝑓 is non-decreasing we have, 

                                𝜉0(𝜔) ⪯ 𝜉𝑛(𝜔) ⪯ 𝜉𝑛+1(𝜔) 
Since 𝜉𝑛(𝜔) and 𝜉𝑛+1(𝜔) are comparable, applying (32), we can 

easily show that {𝑑(𝜉𝑛+1(𝜔), 𝜉𝑛(𝜔))}  is a non-decreasing se-

quence such that 

                  𝑙𝑖𝑚𝑛→∞ 𝑑(𝜉𝑛+1(𝜔), 𝜉𝑛(𝜔)) = 0,𝜔 ∈ 𝛺.                 (34) 

As 𝜂(𝜔) ≤ 𝜉𝑛(𝜔), putting 𝑥 = 𝜂(𝜔)  and 𝑦 = 𝜉𝑛(𝜔)  in (32), we 

get 

  𝜑 (𝑑(𝜂(𝜔), 𝜉𝑛+1(𝜔))) 

         = 𝜑 (𝑑 (𝑓(𝜔, 𝜂(𝜔)), 𝑓(𝜔, 𝜉𝑛(𝜔)))) 

         ≤ 𝑚𝑎𝑥 {𝜙 (𝑑(𝜂(𝜔), 𝜉𝑛(𝜔))) , 

         𝜙(
𝑑(𝜉𝑛(𝜔),𝑓(𝜔,𝜉𝑛(𝜔)))[1+𝑑(𝜂(𝜔),𝑓(𝜔,𝜂(𝜔)))]

1+𝑑(𝜂(𝜔),𝜉𝑛(𝜔))
)} 

         = 𝑚𝑎𝑥 {𝜙 (𝑑(𝜂(𝜔), 𝜉𝑛(𝜔))) , 𝜙 (
𝑑(𝜉𝑛(𝜔),𝑓(𝜔,𝜉𝑛(𝜔)))

1+𝑑(𝜂(𝜔),𝜉𝑛(𝜔))
)}   (35) 

Let us denote 

  𝐺 = {𝑛 ∈ ℕ ∶ 𝜑 (𝑑(𝜂(𝜔), 𝜉𝑛+1(𝜔))) ≤ 𝜙 (𝑑(𝜂(𝜔), 𝜉𝑛(𝜔)))} 

  𝐻 = {𝑛 ∈ ℕ ∶ 𝜑 (𝑑(𝜂(𝜔), 𝜉𝑛+1(𝜔))) ≤ 𝜙 (
𝑑(𝜉𝑛(𝜔),𝑓(𝜔,𝜉𝑛(𝜔)))

1+𝑑(𝜂(𝜔),𝜉𝑛(𝜔))
)} 

From (35), we have 𝐶𝑎𝑟𝑑𝐺 = ∞  or 𝐶𝑎𝑟𝑑𝐻 = ∞ . Let us sup-

posethat 𝐶𝑎𝑟𝑑𝐺 = ∞ . Then there exists infinitely many 𝑛 ∈ ℕ 

satisfying 

                  𝜑 (𝑑(𝜂(𝜔), 𝜉𝑛+1(𝜔))) ≤ 𝜙 (𝑑(𝜂(𝜔), 𝜉𝑛(𝜔))).      (36) 

Since (𝜑, 𝜙) ∈ 𝔉, it follows that the sequence {𝑑(𝜂(𝜔), 𝜉𝑛(𝜔))} 

is non-increasing and it has a limit 𝑙(𝜔) ≥ 0, 𝜔 ∈ 𝛺. Since  

             𝑙𝑖𝑚𝑛→∞ 𝑑(𝜂(𝜔), 𝜉𝑛+1(𝜔)) 

                       = 𝑙𝑖𝑚𝑛→∞ 𝑑(𝜂(𝜔), 𝜉𝑛(𝜔)) = 𝑙(𝜔)                     (37) 

We infer from (36) and condition (a3) that 𝑙(𝜔) = 0, 𝜔 ∈ 𝛺 and 

consequently, 𝑙𝑖𝑚𝑛→∞ 𝜉𝑛+1(𝜔) = 𝜂(𝜔), 𝜔 ∈ 𝛺 . 

On the other hand, if 𝐶𝑎𝑟𝑑𝐻 = ∞, then we can find infinitely 

many 𝑖 ∈ ℕ satisfying 

            𝜑 (𝑑(𝜂(𝜔), 𝜉𝑛+1(𝜔))) ≤ 𝜙 (
𝑑(𝜉𝑛(𝜔),𝑓(𝜔,𝜉𝑛(𝜔)))

1+𝑑(𝜂(𝜔),𝜉𝑛(𝜔))
) 

And since (𝜑, 𝜙) ∈ 𝔉, we obtain  

                 𝑑(𝜂(𝜔), 𝜉𝑛+1(𝜔)) ≤
𝑑(𝜉𝑛(𝜔),𝑓(𝜔,𝜉𝑛(𝜔)))

1+𝑑(𝜂(𝜔),𝜉𝑛(𝜔))
 

Taking the limit as 𝑛 → ∞ in last inequality and using (34), we 

obtain 𝑙𝑖𝑚𝑛→∞ 𝑑(𝜂(𝜔), 𝜉𝑛+1(𝜔)) = 0, 𝜔 ∈ 𝛺 and consequently 

                          𝑙𝑖𝑚𝑛→∞ 𝜉𝑛+1(𝜔) = 𝜂(𝜔), 𝜔 ∈ 𝛺 . 

Therefore, in both cases we obtain  

                        𝑙𝑖𝑚𝑛→∞ 𝜉𝑛+1(𝜔) = 𝜂(𝜔), 𝜔 ∈ 𝛺                       (38) 

In the same way it can be deduced that 

                        𝑙𝑖𝑚𝑛→∞ 𝜉𝑛+1(𝜔) = 𝜁(𝜔), 𝜔 ∈ 𝛺 

Therefore passing to the limit in 

𝑑(𝜂(𝜔), 𝜁(𝜔)) ≤ 𝑑(𝜂(𝜔), 𝜉𝑛+1(𝜔)) + 𝑑(𝜉𝑛+1(𝜔), 𝜁(𝜔)) 

As 𝑛 → ∞, we obtain 𝑑(𝜂(𝜔), 𝜁(𝜔)) = 0. Hence 𝜂(𝜔) = 𝜁(𝜔).  
That is, the fixed point is unique. 

 

Remark 23 Result similar to Corollary 12-20 involving various 

iterates of mappings corresponding to Corollary 21 can also be 

derived. Due to repetition, the details are avoided. 

 

Acknowledgement 
 

The authors express deep gratitude to the referee for his/her valua-

ble comments and suggestions. 

 

Author Contributions 

 

All authors contributed equally and significantly to writing this 

paper. All authors read and approved the final manuscript. 

 

Conflicts of Interest 

 
The authors declare no conflict of interest. 

 

REFERENCES  
 

[1] Agarwal, RP, Karapinar, E, & Roldan-Lopez-de-Hierro, AF (2014), 
Fixed point theorems in quasi-metric spaces and applications, J. 

Nonlinear Covex  Anal. 

[2] Altun, I, Simsek, H (2010), some fixed point theorems on ordered 
metric spaces and application, Fixed Point Theory and Applications, 

vol.2010, 1-17. Article ID 621469. 

[3] Bergiz, M, Karapinar, E, Roldan, A (2014), Discussion on general-
ized-(αψ, βφ)-contractive mappings via generalized altering dis-

tance function and related fixed point theorems, Abstr. Appl. Anal., 

2014, Article ID 259768. 
[4] Cabrera, I, Harjani, J, Sadarangani, K (2013), A fixed point theo-

rem for contractions of rational type in partially ordered metric 
spaces. Ann. Univ. Ferrara, 59, 251–258. http://dx.doi.org/10.1007/ 

s11565-013-0176-x. 

[5] Chang, SS, Huang, NJ (1991), on the principle of randomization of 
fixed points for set valued mappings with applications, North-

eastern Math. J., vol.7, 486-491. 

[6] Dhage, BC (1999): Condensing mappings and applications to exist-
ence theorems for common solution of differential equations, Bull. 

Korean Math. Soc., vol.36, no.3, 565-578. 

[7] Hadzic, O(1979), A random fixed point theorem for multi valued 
mappings of Ciric’s type. Mat. Vesnik 3 (16) (31), no. 4, 397–401. 

[8] Hans, O (1957), Reduzierende Zufallige transformationen, Czech. 

Math. J. Vol.7, 154-158. 
[9] Hans, O (1961), Random operator equations, Proc. 4th Berkeley 

Symp. Mathematics Statistics and Probability, Vol. II, Part I, pp. 

185-202. University of California Press, Berkeley. 
[10] Himmelberg, CJ (1975), Measurable relations. Fund. Math. Vol.87, 

53-72. 

[11] Huang, NJ (1999), a principle of randomization of coincidence 
points with applications, Applied Math. Lett. 12(1999), 107-

113.http://dx.doi.org/10.1016/S0893-9659(98)00157-8. 

http://dx.doi.org/10.1007/%20s11565-013-0176-x
http://dx.doi.org/10.1007/%20s11565-013-0176-x
http://dx.doi.org/10.1016/S0893-9659(98)00157-8


International Journal of Advanced Mathematical Sciences 43 

 
[12] Itoh, S (1979): Random fixed-point theorems with an application to 

random differential equations in Banach spaces. J. Math. Anal. 

Appl. 67(2), 261-273.http://dx.doi.org/10.1016/0022-247X(79)900 
23-4. 

[13] Joshi, MC, Bose, RK(1984): Some Topics in Nonlinear Functional 

Analysis. Wiley, New York. 
[14] Karapinar, E, Shatanawi, W, Tas, K (2013), Fixed point theorems 

on partial metric spaces involving rational expressions, Miskolc 

Math. Notes, 14, 135.142. 
[15] Khan, MS, Swaleh, M, Sessa, S (1984), Fixed point theorems by 

altering distances between the points, Bull. Austr. Math. Soc., 30, 
1-9.http://dx.doi.org/10.1017/S0004972700001659. 

[16] Liu, TC (1988), Random approximations and random fixed points 

for non-self-maps, Proc. Amer. Math. Soc., vol.103, 1129-
1135.http://dx.doi.org/10.1090/S0002-9939-1988-0954994-0. 

[17] Moradi, S, Farajzadeh, A (2012), On the fixed point of (ψ,φ)-weak 

and generalized (ψ,φ)-weak contraction mappings, Appl. Math. Lett. 
25,1257.1262. 

[18] Papageorgiou, NS(1984), Random fixed point theorems for multi-

functions, Math. Japonica, vol. 29, 93-106. 
[19] Papageorgiou, NS (1986), Random fixed point theorems for meas-

urable multifunctions in Banach spaces, Proc. Amer. Math. Soc., 

vol.97, 507-514. http://dx.doi.org/10.1090/S0002-9939-1986-0840 
638-3. 

[20] Rocha, J, Rzepka, B, Sadarangani, K (2014), fixed point theorems 

for contraction of rational type with PPF dependence in Banach 
Spaces. Journal of Function Spaces, Article ID 416187, 1-

8.http://dx.doi.org/10.1155/2014/416187. 

[21] Rockafellar, RT (1969), Measurable dependence of convex sets and 
functions in parameters, J. Math. Anal. Appl., vol.28, 4-25. 

http://dx.doi.org/10.1016/0022-247X(69)90104-8. 

[22] Saluja, AS, Khan, MS, Jhade, PK, Fisher, B (2015), some fixed 
point theorems for mappings involving rational type expressions in 

partial metric spaces. Applied Mathematics E-Notes, 15. 

[23] Saluja, AS, Rashwan, RA, Magarde, D, Jhade, PK (2016), Some 

Result in Ordered Metric Spaces for Rational Type Expressions, 

Facta Universitatis, Ser. Math. Inform. Vol. 31, No 1, 125-138. 

[24] Sehgal, VM, Singh, SP (1985), on random approximations and a 
random fixed point theorem for set valued mappings, Proc. Amer. 

Math. Soc., vol.95, 91-94.http://dx.doi.org/10.1090/S0002-9939-

1985-0796453-1. 
[25] Shahzad, N, Latif, A (2000), A random coincidence point theorem, 

J. Math. Anal. Appl., vol.245, 633-638.http://dx.doi.org/10.1006/ 

jmaa.2000.6772. 
[26] Spacek, a (1955), Zufallige Gleichungen, Czech Math. J., vol.5, 

462-466. 

[27] Tan, KK, Yuan, XZ, Huang, NJ (1994), Random fixed point theo-
rems and approximations in cones, J. Math. Anal. Appl., vol.185, 

378-390.http://dx.doi.org/10.1006/jmaa.1994.1256. 

[28] Wagner DH (1977), Survey of measurable selection theorems, SI-
AM, J, Control Optim., vol.15, 859-903.http://dx.doi.org/10.1137 

/0315056. 

http://dx.doi.org/10.1016/0022-247X(79)900%2023-4
http://dx.doi.org/10.1016/0022-247X(79)900%2023-4
http://dx.doi.org/10.1017/S0004972700001659
http://dx.doi.org/10.1090/S0002-9939-1988-0954994-0
http://dx.doi.org/10.1090/S0002-9939-1986-0840%20638-3
http://dx.doi.org/10.1090/S0002-9939-1986-0840%20638-3
http://dx.doi.org/10.1155/2014/416187
http://dx.doi.org/10.1016/0022-247X(69)90104-8
http://dx.doi.org/10.1090/S0002-9939-1985-0796453-1
http://dx.doi.org/10.1090/S0002-9939-1985-0796453-1
http://dx.doi.org/10.1006/%20jmaa.2000.6772
http://dx.doi.org/10.1006/%20jmaa.2000.6772
http://dx.doi.org/10.1006/jmaa.1994.1256
http://dx.doi.org/10.1137%20/0315056
http://dx.doi.org/10.1137%20/0315056

