Fixed point theorem of Zamfirescus type in generalized cone metric spaces

O. K. Adewale*, B.V. Akinremi
University of Lagos, Lagos, Nigeria
*Corresponding author E-mail: adewalekayode2@yahoo.com

Abstract

In this paper we establish and prove the existence of Zamfirescus fixed point theorem in G-Cone Metric Spaces.The uniqueness is also shown.

Keywords: Cauchy sequence, complete G-cone metric spaces, complete symmetric G-cone metric spaces, G-cone metric spaces, unique fixed point.

1 Introduction

The importance of fixed point theorems cannot be overemphasized. The study of metric fixed point theory has been researched extensively in the past decades [4]. Different researchers have attempted to generalise the usual notion of metric space (X, d) to extend the known metric space theorems in a more general setting. In 2004, Mustafa and Sims [7] introduced the generalised metric space as generalisation of the usual metric space (X, d). Furthermore, Beg, Abbas and Nazir [3], introduced the concept of G - cone metric space by replacing the set of real numbers by ordered Banach space. The authors in [3] also introduced new fixed point theorems in this new structure.

2 Preliminary notes

We briefly give some basic definitions of concepts which serves as background to this work.
Definition $1.1[\mathbf{1 , 4}]$. Let X be a non-empty set. Suppose that $d: X \times X \rightarrow E$ satisfies:
(i) $0 \leq d(x, y) \forall x, y \in X$ and $d(x, y)=0$ if and only if $x=y$,
(ii) $d(x, y)=d(y, x) \forall x, y \in X$,
(iii) $d(x, y) \leq d(x, z)+d(z, y) \forall x, y, z \in X$.

Then d is called a cone metric on X and (X, d) is called a cone metric space.
Definition 1.2 [6]. Let X be a non-empty set and $G: X \times X \times X \rightarrow[0, \infty)$ be a function satisfying the following properties:
(i) $G(x, y, z)=0 \quad$ if and only if $x=y=z$
(ii) $G(x, x, y)>0, \quad \forall x, y \in X$, with $x \neq y$
(iii) $G(x, x, y)<G(x, y, z), \quad \forall x, y, z \in X$, with $z \neq y$
(iv) $G(x, y, z)=G(p(x, y, z))$ (symmetry). Where p denotes the permutation function.
(v) $G(x, y, z) \leq G(x, a, a)+G(a, y, z) \quad \forall a, x, y, z \in X$ (rectangle inequality)

Then the function G is called a G-metric.
Definition 1.3 [3]. Let X be a non-empty set. Suppose that $d: X \times X \times X \rightarrow E$ satisfies:

1. $\left(G_{1}\right) G(x, y, z)=0$ if $x=y=z$,
2. $\left(G_{2}\right) 0<G(x, x, y)$; whenever $x \neq y \forall x, y \in X$,
3. $\left(G_{3}\right) G(x, x, y) \leq G(x, y, z)$; whenever $y \neq z$.
4. $\left(G_{4}\right) G(x, y, z)=G(x, z, y)=G(y, x, z)=\ldots$ (Symmetric in all the three variables),
5. $\left(G_{5}\right) G(x, y, z) \leq G(x, a, a)+G(a, y, z) \forall x, y, z, a \in X$.

Then G is called a generalized cone metric on X and X is called a generalized cone metric space or G-cone metric space.

Definition 1.4 [3]. A G-cone metric space X is symmetric if $G(x, y, y)=G(y, x, x) \forall x, y \in X$.
Proposition 1.5 [3]. Let X be a G-cone metric space, define $d_{G}: X \times X \rightarrow E$ by $d_{G}(x, y)=G(x, y, y)+G(y, x, x)$. Then $\left(X, d_{G}\right)$ is a cone metric space. It can be noted that $G(x, y, y) \leq \frac{2}{3} d_{G}(x, y)$. If X is a symmetric G-cone metric space, then $d_{G}(x, y)=2 G(x, y, y) \forall x, y \in X$.

Definition 1.6 [3]. Let X be a G-cone metric space and $\left\{x_{n}\right\}$ be a sequence in X. We say that $\left\{x_{n}\right\}$ is:
(i) Cauchy sequence if for every $c \in E$, there is N such that $\forall m, n>N, G\left(x_{n}, x_{m}, x_{l}\right) \ll c$.
(ii) Convergent sequence if for every $c \in E$ with $0 \ll c$, there is N such that $\forall m, n>N, G\left(x_{n}, x_{m}, x\right) \ll c$ for some fixed $x \in X$. Here x is called the limit of the sequence $\left\{x_{n}\right\}$ and is denoted by $\lim x_{n}=x$ or $x_{n} \rightarrow x$ as $n \rightarrow \infty$.

A G-cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X.
Proposition 1.7 [3]. Let X be a G-cone metric space then the following are equivalent.
(i) x_{n} is convergent to x .
(ii) $G\left(x_{n}, x_{n}, x\right) \rightarrow 0$, as $n \rightarrow \infty$.
(iii) $G\left(x_{n}, x, x\right) \rightarrow 0$, as $n \rightarrow \infty$.
(iv) $G\left(x_{n}, x_{m}, x\right) \rightarrow 0$, as $n, m \rightarrow \infty$.

Lemma 1.8 [3]. Let X be a G cone metric space. x_{m}, y_{n} and z_{l} be sequences in X such that $x_{m} \rightarrow x, y_{n} \rightarrow y$ and $z_{l} \rightarrow z$, then $G\left(x_{m}, y_{n}, z_{l}\right) \rightarrow G(x, y, z)$ as $m, n, l \rightarrow \infty$.

Lemma 1.9 [3]. Let $\left\{x_{n}\right\}$ be a sequence in G-cone metric space X and $x \in X$. If $\left\{x_{n}\right\}$ converges to x and x_{n} converges to y , then $x=y$.

Lemma 1.10 [3]. Let $\left\{x_{n}\right\}$ be a sequence in G-cone metric space X and if $\left\{x_{n}\right\}$ converges to $x \forall x \in X$, then $G\left(x_{m}, x_{n}, x\right) \rightarrow 0$ as $m, n \rightarrow \infty$.

Lemma 1.11 [3]. Let $\left\{x_{n}\right\}$ be a sequence in G-cone metric space X and $x \in X$. If $\left\{x_{n}\right\}$ converges to $x \in X$,then x_{n} is a Cauchy sequence.

Lemma 1.12 [3]. Let $\left\{x_{n}\right\}$ be a sequence in a G-cone metric space X and if x_{n} is a Cauchy sequence in X, then $G\left(x_{m}, x_{n}, x_{l}\right) \rightarrow 0$, as $m, n, l \rightarrow \infty$.

Theorem 1.13 [11]. Each self map T of a complete metric space (X, d) such that

$$
d(T x, T y) \leq k d(x, y) \quad(x \neq y, 0 \leq k<1)
$$

has a unique fixed point.
Theorem 1.14 [3]. Let X be a complete symmetric G-cone metric space and $T: X \rightarrow X$ be a mapping satisfying one of the following conditions:

$$
\begin{aligned}
& G(T x, T y, T z) \leq a G(x, y, z)+b G(x, T x, T x)+c G(y, T y, T y)+d G(z, T z, T z) \\
& o r \\
& G(T x, T y, T z) \leq a G(x, y, z)+b G(x, T x, x)+c G(y, y, T y)+d G(z, z, T z)
\end{aligned}
$$

$\forall x, y, z \in X$, where $0 \leq a+b+c+d<1$. Then T has a unique fixed point.
Theorem 1.15 [3]. Let X be a complete G-cone metric space and $T: X \rightarrow X$ be a mapping satisfying one of the following conditions:

$$
\begin{aligned}
G(T x, T y, T z) & \leq a[G(x, T y, T y)+G(y, T x, T x)] \\
o r & \\
G(T x, T y, T z) & \leq a[G(x, x, T y)+G(y, y, T x)]
\end{aligned}
$$

$\forall x, y, z \in X$, where $a \in\left[0, \frac{1}{2}\right)$. Then T has a unique fixed point.
Example 1.16 [3].. Let $E=R^{3} ; P=\left\{(x, y, z) \in R^{3}: x, y, z \geq 0\right\}$, and
$X=\left\{(x, 0,0) \in R^{3}: 0 \leq x \leq 1\right\} \bigcup\left\{(0, x, 0) \in R^{3}: 0 \leq x \leq 1\right\} \bigcup\left\{(0,0, x) \in R^{3}: 0 \leq x \leq 1\right\}$.
Define mapping $G: X \times X \times X \rightarrow E$ by
$G((x, 0,0),(y, 0,0),(z, 0,0))$
$=\left(\frac{4}{3}(/ x-y /+/ y-z /), / x-y /+/ y-z /,(/ x-y /+/ y-z /)\right), G((0, x, 0),(0, y, 0),(0, z, 0))$
$=\left((/ x-y /+/ y-z /), \frac{2}{3}(/ x-y /+/ y-z /),(/ x-y /+/ y-z /)\right), G((0,0, x),(0,0, y),(0,0, z))$
$=\left((/ x-y /+/ y-z /), \left\lvert\, x-y /+/ y-z /, \frac{1}{3}(/ x-y /+/ y-z /)\right.\right)$
and
$G((x, 0,0),(0, y, 0),(0,0, z))=G((0,0, z),(0, y, 0),(x, 0,0))=\ldots$
$=\left(\frac{4}{3} x+y+z, x+\frac{2}{3} y+z, x+y+\frac{1}{3} z\right)$
Then X is a Complete G-cone metric space. Let $T: X \rightarrow X$
$T(x, 0,0)=(0, x, 0), T(0, x, 0)=\left(0,0, \frac{1}{3} x\right)$ and $T(0,0, x)=\left(\frac{2}{3} x, 0,0\right)$.
Then T satisfies the contractive condition given in Theorem 3.5 of [3] with constant $a=\frac{3}{4} \in[0,1)$.
Note that T has a unique fixed point $(0,0,0) \in X$.

3 The Main result

Theorem 2.1. Let X be a complete symmetric G - cone metric space and $T: X \rightarrow X$ a map for which there exist the real numbers a , b and c satisfying $0 \leq a<1,0 \leq b, c<\frac{1}{2}$, such that for each pair $x, y, z \in X$ at least one of the following is true.

$$
\begin{aligned}
\left(G Z_{1}\right) & G(T x, T y, T z) \leq \\
\left(G Z_{2}\right) \quad & G(T x, T y, T z) \leq \\
\left(G Z_{3}\right) \quad & G(T x, T y, T z) \leq \\
& \\
& c[G(x, y, T x, T y, T x)+G(y, T y, T y)+G(z, T z, T z)] \\
& +G(y, T x, T x)+G(x, T z, T z)+G(y, T z, T z) \\
&
\end{aligned}
$$

Then T has a unique fixed point.

Proof:

Considering $\left(G Z_{1}\right)$,

$$
\begin{equation*}
G(T x, T y, T y) \leq a G(x, y, y) \tag{1}
\end{equation*}
$$

Considering $\left(G Z_{2}\right)$,

$$
\begin{equation*}
G(T x, T y, T y) \leq b[G(x, T x, T x)+2 G(y, T y, T y)] \tag{2}
\end{equation*}
$$

Considering $\left(G Z_{3}\right)$,

$$
\begin{equation*}
G(T x, T y, T y) \leq c[2 G(x, T y, T y)+2 G(y, T x, T x)+2 G(y, T y, T y)] \tag{3}
\end{equation*}
$$

By adding (1), (2) and (3), we have

$$
\begin{equation*}
G(T x, T y, T y) \leq q G(x, y, y)+r G(x, T x, T x)+s G(y, T y, T y)+t[G(x, T y, T y)+G(y, T x, T x)] \tag{4}
\end{equation*}
$$

where $q=\frac{a}{3}, r=\frac{b}{3}, s=\frac{2 b+2 c}{3}$ and $t=\frac{2 c}{3}$.
Suppose T satisfies condition (4) and $x_{0} \in X$ be an arbitrary point and define the sequence x_{n} by $x_{n}=T^{n} x_{0}$, then we have

$$
\begin{align*}
G\left(x_{n}, x_{n+1}, x_{n+1}\right) & \leq \\
& q G\left(x_{n-1}, x_{n}, x_{n}\right)+r G\left(x_{n-1}, x_{n}, x_{n}\right) \\
& +s G\left(x_{n}, x_{n+1}, x_{n+1}\right)+t G\left(x_{n-1}, x_{n+1}, x_{n+1}\right) \\
{[1-\mathrm{s}-\mathrm{t}] G\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq } & {[\mathrm{q}+\mathrm{r}+\mathrm{t}]\left[G\left(x_{n-1}, x_{n}, x_{n}\right)\right.} \tag{5}\\
G\left(x_{n}, x_{n+1}, x_{n+1}\right) & \leq \frac{q+r+t}{1-s-t} G\left(x_{n-1}, x_{n}, x_{n}\right)
\end{align*}
$$

Let $j=\frac{q+r+t}{1-s-t}<1$ i.e $q \in[0,1)$, we deduce that

$$
\begin{align*}
G\left(x_{n}, x_{n+1}, x_{n+1}\right) & \leq j G\left(x_{n-1}, x_{n}, x_{n}\right) \\
& \leq j^{2} G\left(x_{n-2}, x_{n-1}, x_{n-1}\right) \\
& \leq j^{3} G\left(x_{n-3}, x_{n-2}, x_{n-2}\right) \\
& \leq j^{n} G\left(x_{0}, x_{1}, x_{1}\right) . \tag{6}
\end{align*}
$$

By repeated use of rectangle inequality, we have

$$
\begin{align*}
G\left(x_{n}, x_{m}, x_{m}\right) \leq & G\left(x_{n}, x_{n+1}, x_{n+1}\right)+G\left(x_{n+1}, x_{n+2}, x_{n+2}\right) \\
& +G\left(x_{n+2}, x_{n+3}, x_{n+3}\right)+\ldots+G\left(x_{m-1}, x_{m}, x_{m}\right) \tag{7}
\end{align*}
$$

From (6) and (7), we have

$$
\begin{align*}
G\left(x_{n}, x_{m}, x_{m}\right) \leq & G\left(x_{n}, x_{n+1}, x_{n+1}\right)+G\left(x_{n+1}, x_{n+2}, x_{n+2}\right) \\
& +G\left(x_{n+2}, x_{n+3}, x_{n+3}\right)+\ldots+G\left(x_{m-1}, x_{m}, x_{m}\right) \\
\leq & {\left[j^{n}+j^{n+1}+j^{n+2}+j^{n+3}+\ldots+j^{m-1}\right] G\left(x_{0}, x_{1}, x_{1}\right) } \\
\leq & j^{n}\left[1+j+j^{2}+j^{3}+j^{4}+\ldots+j^{m-n-1}\right] G\left(x_{0}, x_{1}, x_{1}\right) \\
\leq & j^{n}[1-j]^{-1} G\left(x_{0}, x_{1}, x_{1}\right) \\
\leq & {\left[\frac{j^{n}}{1-j}\right] G\left(x_{0}, x_{1}, x_{1}\right) . } \tag{8}
\end{align*}
$$

Let $0 \ll c$ be given. Choose $\delta>{ }_{j^{n}} 0$ such that $c+N_{\delta}(0) \subseteq P$, where $N_{\delta}(0)=[y \in E:\|y\|<\delta]$. Also, choose a natural number N_{1} such that $\frac{j^{n}}{1-j} G\left(x_{0}, x_{1}, x_{1}\right) \in N_{\delta}(0), \forall m \geq N_{1}$. Then $\left[\frac{j^{n}}{1-j}\right] G\left(x_{0}, x_{1}, x_{1}\right) \ll c \forall m \geq N_{1}$. i.e. $G\left(x_{n}, x_{m}, x_{l}\right) \ll c \forall m \geq N_{1}$. Therefore $\left\{x_{n}\right\}$ is a G-Cauchy Sequence.
Next we will show that $T u=u$. Suppose $T u \neq u$ and $\left\{x_{n}\right\} \rightarrow u$.

$$
\begin{align*}
G\left(x_{n}, T u, T u\right) \leq & q G\left(x_{n-1}, u, u\right)+r G\left(x_{n-1}, x_{n}, x_{n}\right)+s G(u, T u, T u) \\
& +t\left[G\left(x_{n-1}, T u, T u\right)+G\left(u, x_{n}, x_{n}\right)\right] . \\
G(u, T u, T u) \leq & {[\mathrm{s}+\mathrm{t}] G(u, T u, T u) . } \tag{9}
\end{align*}
$$

This is a contradiction. So, $T u=u$.
To show the uniqueness, suppose $v \neq u$ is such that $T v=v$, then

$$
\begin{align*}
G(T u, T v, T v) \leq & q G(u, v, v)+r G(u, T u, T u)+s G(v, T v, T v) \\
& +t[G(u, T v, T v)+G(v, T u, T u)] . \tag{10}
\end{align*}
$$

Since $T u=u$ and $T v=v$, we have

$$
\begin{align*}
G(u, v, v) \leq & q G(u, v, v)+r G(u, u, u)+s G(v, v, v) \\
& +t[G(u, v, v)+G(v, u, u)] . \\
G(u, v, v) \leq & {[q+2 t] G(u, v, v), } \tag{11}
\end{align*}
$$

A contracdiction, which implies that $v=u$. Hence the proof.

References

[1] M. Abbas and G. Jungek, Common fixed point results for noncommuting mapping without continuity in cone metric spaces, J. Math. Anal. Appl. vol341 (2008), no. 1, pp. 416-420.
[2] M. Abbas and B. E. Rhoades, Fixed and periodic point results in cone metric spaces. Appl. Math. Letter (2008). doi:10.1016/j.akl.07.001.1.
[3] I. Beg, M. Abbas and T. Nazir, Generalized cone metric spaces. Journal of nonlinear science and applications. 3(2010), no1, 21-31.
[4] V. Berinde, Iterative approximation of fixed points, Efemeride, (2002).
[5] B. C. Dhage, Generalized metric space and mapping with fixed point, Bulletin of the Calcutta Mathematical Society, Vol. 84(1992), 329-336.
[6] B. C. Dhage, On generalized metric space and topological structure II, Pure and Applied Mathematika Sciences, Vol. 40(1994), no.1-2, 37-41, 1994.
[7] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Analysis, Vol. 7 (2006), no.2, 289-297.
[8] Z. Mustafa and B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces (2009). doi: 10.1155/2009/917175.
[9] Z. Mustafa and B. Sims, Some remarks concerning D-metric spaces. Proceedings of the International Conference on Fixed Point Theory and Applications, Valencia (Spain), July (2003).
[10] Z. Mustafa: A new structure for generalized metric spaces with applications to fixed point theory, PhD thesis, University of Newcastle, Callaghan, Australia (2005).
[11] T. Zamfirescu: Fixed point theorems in metric spaces, Archive for Mathematical Logic (Basel),(1972) 23: 292-298.

