Solution and intuitionistic fuzzy stability of n- dimensional quadratic functional equation: direct and fixed point methods
-
2014-01-10 https://doi.org/10.14419/ijams.v2i1.1498 -
Abstract
In this paper, the authors established the solution in vector space and Intuitionistic Fuzzy stability of n-dimensional quadratic functional equation using direct and fixed point methods. -
References
- J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, 1989.
- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
- M. Arunkumar, Three Dimensional Quartic Functional Equation In Fuzzy Normed Spaces, Far East Journal of AppliedMathematics, Vol 41, No. 2, (2010), 88-94.
- M. Arunkumar and S. Karthikeyan, Solution and Stability of n-Dimensional Additive Functional Equation, International Journal of Applied Mathematics, Vol 25, No. 2, (2012), 163-174.
- K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
- T. Bag, S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math, 11 (3) (2003) 687-705.
- T. Bag, S.K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems, 151 (2005) 513-547.
- C.Borelli, G.L.Forti, On a general Hyers-Ulam stability, Internat J.Math.Math.Sci, 18 (1995), 229-236.
- I.S. Chang, E.H. Lee, H.M. Kim, On the Hyers-Ulam-Rassias stability of a quadratic functional equations, Math. Ineq.Appl., 6(1) (2003), 87-95.
- S.C. Cheng, J.N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc, 86 (1994) 429-436.
- P.W.Cholewa, Remarks on the stability of functional equations , Aequationes Math., 27 (1984), 76-86.
- S.Czerwik, On the stability of the quadratic mappings in normed spaces,Abh.Math.Sem.Univ Hamburg., 62 (1992), 59-64.
- S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.
- G. Deschrijver, E.E. Kerre, On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems,23 (2003), 227-235.
- C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets and Systems, 48 (1992) 239-248.
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal.Appl., 184 (1994), 431-436.
- S.B. Hosseini, D. O'Regan, R. Saadati, Some results on intuitionistic fuzzy spaces, Iranian J. Fuzzy Syst, 4 (2007) 53-64.
- D.H. Hyers, On the stability of the linear functional equation, Proc.Nat. Acad.Sci.,U.S.A.,27 (1941) 222-224.
- D.H. Hyers, G. Isac,Th.M. Rassias , Stability of functional equations in several variables, Birkhauser, Basel, 1998.
- K.W. Jun, H.M. Kim, On the stability of an n-dimensional quadratic and additive type functional equation, Math. Ineq.Appl, 9(1) (2006), 153-165.
- S.M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl, 222 (1998), 126-137.
- S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
- Pl. Kannappan, Quadratic functional equation inner product spaces, Results Math, 27, No.3-4, (1995), 368-372.
- Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, 2009.
- A.K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems, 12 (1984) 143-154.
- I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica ,11 (1975) 326-334.
- B. Margolis, J. B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., Vol.126, no.74 (1968), 305-309.
- A.K. Mirmostafaee, M.S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems, Vol. 159, no.6, (2008), 72029.
- J.H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 22 (2004), 1039-1046.
- J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal., 46, (1982) 126-130.
- J.M. Rassias, On approximately of approximately linear mappings by linear mappings Bull. Sc. Math, 108, (1984) 445-446.
- Th.M. Rassias, On the stability of the linear mapping in Banach spaces Proc.Amer.Math. Soc., 72 (1978), 297-300.
- Th.M.Rassias, On the stability of the functional equations in Banach spacesJ. Math. Anal. Appl, 251, (2000), 264-284.
- Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, Bostan London, 2003.
- K. Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 Vol.3, No. 08, 36-47.
- K.Ravi, M. Arunkumar and P. Narasimman, Fuzzy stability of a Additive functional equation, International Journal of Mathematical Sciences, Vol. 9, No. A11, Autumn 2011, 88-105.
- R. Saadati, J.H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals, 27 (2006), 331-344.
- R. Saadati, J.H. Park, Intuitionstic fuzzy Euclidean normed spaces, Commun. Math. Anal., 1 (2006), 85-90.
- S.Shakeri, Intuitionstic fuzzy stability of Jensen type mapping, J. Nonlinear Sci. Appli., Vol.2 No. 2 (2009), 105-112.
- F.Skof, Proprietµa locali e approssimazione di operatori, Rend. Sem. Mat.Fis. Milano, 53 (1983), 113-129.
- S.M. Ulam, Problems in Modern Mathematics, Science Editions,Wiley, NewYork, 1964 (Chapter VI, Some Questions in Analysis: 1, Stability).
- Ding -Xuan Zhou, On a conjecture of Z. Ditzian, J. Approx. Theory, 69 (1992), 167-172.
-
Downloads
-
How to Cite
Arunkumar, M., & Karthikeyan, S. (2014). Solution and intuitionistic fuzzy stability of n- dimensional quadratic functional equation: direct and fixed point methods. International Journal of Advanced Mathematical Sciences, 2(1), 21-33. https://doi.org/10.14419/ijams.v2i1.1498