Solution and intuitionistic fuzzy stability of n- dimensional quadratic functional equation: direct and fixed point methods

  • Authors

    • M. Arunkumar DEPARTMENT OF MATHEMATICS, GOVERNMENT ARTS COLLEGE, TIRUVANNAMALAI-606 603, TAMILNADU, INDIA.
    • S. Karthikeyan DEPARTMENT OF MATHEMATICS, R.M.K. ENGINEERING COLLEGE, KAVARAIPETTAI, THIRUVALLUR-601 206, TAMILNADU, INDIA.
    2014-01-10
    https://doi.org/10.14419/ijams.v2i1.1498
  • Abstract

    In this paper, the authors established the solution in vector space and Intuitionistic Fuzzy stability of n-dimensional quadratic functional equation using direct and fixed point methods.
  • References

    1. J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, 1989.
    2. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
    3. M. Arunkumar, Three Dimensional Quartic Functional Equation In Fuzzy Normed Spaces, Far East Journal of AppliedMathematics, Vol 41, No. 2, (2010), 88-94.
    4. M. Arunkumar and S. Karthikeyan, Solution and Stability of n-Dimensional Additive Functional Equation, International Journal of Applied Mathematics, Vol 25, No. 2, (2012), 163-174.
    5. K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
    6. T. Bag, S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math, 11 (3) (2003) 687-705.
    7. T. Bag, S.K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems, 151 (2005) 513-547.
    8. C.Borelli, G.L.Forti, On a general Hyers-Ulam stability, Internat J.Math.Math.Sci, 18 (1995), 229-236.
    9. I.S. Chang, E.H. Lee, H.M. Kim, On the Hyers-Ulam-Rassias stability of a quadratic functional equations, Math. Ineq.Appl., 6(1) (2003), 87-95.
    10. S.C. Cheng, J.N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc, 86 (1994) 429-436.
    11. P.W.Cholewa, Remarks on the stability of functional equations , Aequationes Math., 27 (1984), 76-86.
    12. S.Czerwik, On the stability of the quadratic mappings in normed spaces,Abh.Math.Sem.Univ Hamburg., 62 (1992), 59-64.
    13. S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.
    14. G. Deschrijver, E.E. Kerre, On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems,23 (2003), 227-235.
    15. C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets and Systems, 48 (1992) 239-248.
    16. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal.Appl., 184 (1994), 431-436.
    17. S.B. Hosseini, D. O'Regan, R. Saadati, Some results on intuitionistic fuzzy spaces, Iranian J. Fuzzy Syst, 4 (2007) 53-64.
    18. D.H. Hyers, On the stability of the linear functional equation, Proc.Nat. Acad.Sci.,U.S.A.,27 (1941) 222-224.
    19. D.H. Hyers, G. Isac,Th.M. Rassias , Stability of functional equations in several variables, Birkhauser, Basel, 1998.
    20. K.W. Jun, H.M. Kim, On the stability of an n-dimensional quadratic and additive type functional equation, Math. Ineq.Appl, 9(1) (2006), 153-165.
    21. S.M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl, 222 (1998), 126-137.
    22. S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
    23. Pl. Kannappan, Quadratic functional equation inner product spaces, Results Math, 27, No.3-4, (1995), 368-372.
    24. Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, 2009.
    25. A.K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems, 12 (1984) 143-154.
    26. I. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica ,11 (1975) 326-334.
    27. B. Margolis, J. B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., Vol.126, no.74 (1968), 305-309.
    28. A.K. Mirmostafaee, M.S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems, Vol. 159, no.6, (2008), 72029.
    29. J.H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 22 (2004), 1039-1046.
    30. J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal., 46, (1982) 126-130.
    31. J.M. Rassias, On approximately of approximately linear mappings by linear mappings Bull. Sc. Math, 108, (1984) 445-446.
    32. Th.M. Rassias, On the stability of the linear mapping in Banach spaces Proc.Amer.Math. Soc., 72 (1978), 297-300.
    33. Th.M.Rassias, On the stability of the functional equations in Banach spacesJ. Math. Anal. Appl, 251, (2000), 264-284.
    34. Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, Bostan London, 2003.
    35. K. Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 Vol.3, No. 08, 36-47.
    36. K.Ravi, M. Arunkumar and P. Narasimman, Fuzzy stability of a Additive functional equation, International Journal of Mathematical Sciences, Vol. 9, No. A11, Autumn 2011, 88-105.
    37. R. Saadati, J.H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals, 27 (2006), 331-344.
    38. R. Saadati, J.H. Park, Intuitionstic fuzzy Euclidean normed spaces, Commun. Math. Anal., 1 (2006), 85-90.
    39. S.Shakeri, Intuitionstic fuzzy stability of Jensen type mapping, J. Nonlinear Sci. Appli., Vol.2 No. 2 (2009), 105-112.
    40. F.Skof, Proprietµa locali e approssimazione di operatori, Rend. Sem. Mat.Fis. Milano, 53 (1983), 113-129.
    41. S.M. Ulam, Problems in Modern Mathematics, Science Editions,Wiley, NewYork, 1964 (Chapter VI, Some Questions in Analysis: 1, Stability).
    42. Ding -Xuan Zhou, On a conjecture of Z. Ditzian, J. Approx. Theory, 69 (1992), 167-172.
  • Downloads

  • How to Cite

    Arunkumar, M., & Karthikeyan, S. (2014). Solution and intuitionistic fuzzy stability of n- dimensional quadratic functional equation: direct and fixed point methods. International Journal of Advanced Mathematical Sciences, 2(1), 21-33. https://doi.org/10.14419/ijams.v2i1.1498