Perturbation of n dimensional AQ - mixed type functional equation via Banach spaces and Banach algebra : Hyers direct and alternative fixed point methods

  • Authors

    • M. Arunkumar GOVERNMENT ARTS COLLEGE, TIRUVANNAMALAI-606 603, TAMILNADU, INDIA.
    2014-01-10
    https://doi.org/10.14419/ijams.v2i1.1499
  • Abstract

    In this paper, the authors obtain the general solution and generalized Ulam - Hyers stability of n dimensional additive quadratic functional equation in Banach spaces using direct and fixed point methods. We also investigate the stability of the above  equation in Banach algebra using direct and fixed point approach.
  • References

    1. J. Aczel and J. Dhombres, Functional Equations in Several Variables,Cambridge Univ, Press, 1989.
    2. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.
    3. M. Arunkumar, S. Karthikeyan, Solution and stability of n¡dimensional mixed Type additive and quadratic functional equation, Far East Journal of Applied Mathematics, Volume 54, Number 1, 2011, 47-64.
    4. M. Arunkumar, John M. Rassias, On the generalized Ulam-Hyers stability of an AQ-mixed type functional equation with counter examples, Far East Journal of Applied Mathematics, Volume 71, No. 2, (2012), 279-305.
    5. C.Borelli, G.L.Forti, On a general Hyers-Ulam stability, Internat J.Math.Math.Sci, 18 (1995), 229-236.
    6. I.S. Chang, E.H. Lee, H.M. Kim, On the Hyers-Ulam-Rassias stability of a quadratic functional equations, Math. Ineq. Appl., 6(1) (2003), 87-95.[7] P.W. Cholewa, Remarks on the stability of functional equations , Aequationes Math., 27 (1984), 76-86.
    7. S.Czerwik, On the stability of the quadratic mappings in normed spaces,Abh.Math.Sem.Univ Hamburg., 62 (1992), 59-64.
    8. S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.
    9. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings , J. Math. Anal. Appl., 184 (1994), 431-436.
    10. M. Eshaghi Gordji, H. Khodaie, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, arxiv: 0812. 2939v1 Math FA, 15 Dec 2008.
    11. M. Eshaghi Gordji, H. Khodaei, J.M. Rassias, Fixed point methods for the stability of general quadratic functional
    12. equation, Fixed Point Theory, 12 (2011), no. 1, 71-82.
    13. D.H. Hyers, On the stability of the linear functional equation, Proc.Nat. Acad.Sci.,U.S.A., 27 (1941) 222-224.
    14. D.H. Hyers, G. Isac, Th.M. Rassias, Stability of functional equations in several variables,Birkhauser, Basel, 1998.
    15. K.W. Jun, H.M. Kim, On the stability of an n-dimensional quadratic and additive type functional equation, Math. Ineq. Appl, 9(1) (2006), 153-165.
    16. S.M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), 126-137.
    17. S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
    18. Pl. Kannappan, Quadratic functional equation inner product spaces, Results Math., 27, No.3-4, (1995), 368-372.
    19. Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, 2009.
    20. B.Margoils, J.B.Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull.Amer. Math. Soc., 126 74 (1968), 305-309.
    21. J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46, (1982) 126-130.
    22. J.M. Rassias, H.M. Kim, Generalized Hyers-Ulam stability for general additive functional equations in quasi-B-normed spaces, J. Math. Anal. Appl., 356 (2009), no. 1, 302-309.
    23. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., 72 (1978), 297-300.
    24. Matina J. Rassias, M. Arunkumar, S. Ramamoorthi, Stability of the Leibniz additive-quadratic functional equation in Quasi-Beta normed space: Direct and fixed point methods, Journal Of Concrete And Applicable Mathematics (JCAAM), Vol. 14 No. 1-2, (2014), 22 - 46.
    25. Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, Bostan London, 2003.
    26. K. Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 Vol.3, No. 08, 36-47.
    27. F.Skof, Proprietµa locali e approssimazione di operatori,Rend. Sem. Mat.Fis. Milano, 53 (1983), 113-129.
    28. S.M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, NewYork, 1964.
    29. T.Z. Xu, J.M. Rassias, M.J. Rassias, W.X. Xu, A fixed point approach to the stability of quintic and sextic functional equations in quasi-B-normed spaces, J. Inequal. Appl., 2010, Art. ID 423231, 23 pp.
  • Downloads

  • How to Cite

    Arunkumar, M. (2014). Perturbation of n dimensional AQ - mixed type functional equation via Banach spaces and Banach algebra : Hyers direct and alternative fixed point methods. International Journal of Advanced Mathematical Sciences, 2(1), 34-56. https://doi.org/10.14419/ijams.v2i1.1499