Partial orders on \(C = D + Di\) and \(H = D + Di + Dj + Dk\)
-
2015-10-10 https://doi.org/10.14419/ijams.v3i2.4773 -
Complex number, Directed partial order, Lattice order, Partial order, Quaternion. -
Abstract
Let \(D\) be a totally ordered integral domain. We study partial orders on the rings \(C = D + Di\) and \(H = D + Di + Dj + Dk\), where \(i^{2} = j^{2} = k^{2} = -1\). -
References
[1] G. Birkho, R. S. Pierce, Lattice-ordered rings, An. Acad. Brasil. Ci., 28 (1956), 41-69.
[2] L. Fuchs, Partially ordered algebraic systems, Dover Publications, Inc., (1963).
[3] J. Ma, Lecture notes on algebraic structure of lattice-ordered rings, World Scientific Publishing, (2014).
[4] J. Ma, Directed partial orders on real quaternions, Quaestiones Mathematicae, (to appear).
-
Downloads
-
How to Cite
Ma, J. (2015). Partial orders on \(C = D + Di\) and \(H = D + Di + Dj + Dk\). International Journal of Advanced Mathematical Sciences, 3(2), 156-160. https://doi.org/10.14419/ijams.v3i2.4773