On a class of Leibniz algebras
-
2015-10-10 https://doi.org/10.14419/ijams.v3i2.5290 -
Killing form, Leibniz algebras, Leibniz modules, Representations, Semisimplicity. -
Abstract
We pointed out the class of Leibniz algebras such that the Killing form is non degenerate implies algebras are semisimple.
-
References
[1] S., Ayupov, Sh.A. and Omirov, B.A.,, "Cartan subalgebras, weight spaces and criterion of solvability of finiite dimensional Leibniz algebras.",Rev. Mat. Complut., Vol.19, No.1, (2006), pp.183-195.
[2] D. W. Barnes, "On Engel's theorem for Leibniz algebras", Comm. Algebra, Vol.40, No.1, (2012), 1388-1389, arXiv:1012.0608.
[3] C. J. A. Béré, N . B. Pilabré and A. Kobmbaye "Lie's theorems on soluble Leibniz algebras.", British journal of Mathematics & Computer Science , Vol.4, No.18, (2014), pp.2570-2581.
[4] I. Demir, K. C. Misra and E. Stitzinger "On some structures of Leibniz Algebras, ", arXiv:1307.7672v1 .
[5] J. E. Hymphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics) Springer (1972).
http://books.google.bf/books?id=SD4DvUFa6QC
[6] G. Masons and G. Yamskulna, "Leibniz Algebras and Lie Algebras", Published online October 23, 2013
http://dxdoi.org/103842/SIGMA2013.063,
[7] R. Schafer, Non associative algebras,
-
Downloads
-
How to Cite
Béré, C., Kobmbaye, A., & Konkobo, A. (2015). On a class of Leibniz algebras. International Journal of Advanced Mathematical Sciences, 3(2), 147-155. https://doi.org/10.14419/ijams.v3i2.5290