On Diophantine Equations \(2^x + 3y^2 = 4^z\) and \( 2^x + 7y^2 = 4^z\)
-
2013-03-15 https://doi.org/10.14419/ijams.v1i1.708 -
Abstract
In this note, we study the Diophantine equations \(2^x + 3y^2 = 4^z\) and \(2^x+7y^2 = 4^z\). Also, we give solutions to \(2^x+dy^2 = 4^z\) for \(d = (2^k-1)/9, k\) a natural number = 0 (mod 6). -
Downloads
-
How to Cite
Rabago, J. F. (2013). On Diophantine Equations \(2^x + 3y^2 = 4^z\) and \( 2^x + 7y^2 = 4^z\). International Journal of Advanced Mathematical Sciences, 1(1), 23-25. https://doi.org/10.14419/ijams.v1i1.708