Review on investigating the possibility of local hidden variable theories-quantum teleportation

  • Abstract
  • Keywords
  • References
  • PDF
  • Abstract

    The core of the paper was to investigate the possibility of local hidden variable theory and its application in quantum teleportation. We reviewed literature on the Bell's inequality which is necessary for quantum teleportation. Quantum teleportation utilises a single-particle entangled state which can be successfully achieved by the application of the locality assumption which leads to Bell's inequality. A violation of the Bell's inequality signifies the nonlocal nature of a single particle useful for quantum teleportation.

  • Keywords

    Bell's inequality; Classical Mechanics; Local Hidden Variable; Quantum Teleportation; Superpossition

  • References

      [1] Alain Aspect, “Bell’s theorem: the naive view of an experimentalist”, Springer, (2002).

      [2] Barrett, M. D., Chiaverini, J., Schaetz, T., & Britton, J., “Deterministic quantum teleportation of atomic qubits”, Nature, Vol.429, No.6993, (2004).

      [3] Bell, J. S., “Speakable and unspeakable in quantum mechanics: Collected papers on quantum philosophy”, Cambridge university press, (2004).

      [4] Bell, J. S., “On the impossible pilot wave”, Foundations of Physics,

      [5] Vol.12, No.10, (1982), pp.989-999

      [6] Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A. and Wootters, W. K., “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels”, Physical review letters, Vol.70, No.13, (1993), p.1895.

      [7] Blaylock, Guy. “The EPR paradox, Bell’s inequality, and the question of locality”, American Journal of Physics, Vol.78, No.1, (2010), p:111-120.

      [8] Dada, A. C., Leach, J., Buller, G. S., Padgett, M. J., & Andersson, E., “Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities”, Nature Physics, Vol.7, No.9, (2011), 677-680.

      [9] Dirac, P. A. M., “The principles of quantum mechanics ”, Oxford

      [10] university press, No.27, (1981).

      [11] Einstein, A., Podolsky, B. and Rosen, N., “Can quantum-mechanical description of physical reality be considered complete?”, Physical review, Vol.47, No.10, (1935), p.777.

      [12] Genovese, M., “Research on hidden variable theories: A review of recent progresses”, Physics Reports, Vol.413, No.6, (2005), pp.319-396.

      [13] Griffiths, D. J., “Introduction to quantum mechanics”, Pearson Education India.

      [14] Hasegawa, Yuji, Rudolf Loidl, Gerald Badurek, Matthias Baron, and Helmut Rauch, “Violation of a Bell-like inequality in single-neutron nterferometry”, Nature 425, No. 6953, (2003), pp:45-48.

      [15] Home, D. and Selleri, F., “Bell’s theorem and the EPR paradox”, LaRivista del Nuovo Cimento, Vol.14, No.9, (1978-1999), pp.1-95.

      [16] Horodecki, R., Horodecki, M. and Horodecki, P., “Teleportation, Bell’s inequalities and inseparability”, Physics Letters A, Vol.222, No.1-2, (1996), pp.21-25.

      [17] Hu, M. L., “Teleportation of the one-qubit state in decoherence environments”, Journal of Physics B: Atomic, Molecular and Optical Physics, Vol.44, No.2, (2011), p.025502.

      [18] J. S. Bell et al., “On the einstein-podolsky-rosen paradox”, Physics, Vol.1, No.3, (1964), pp:195-200.

      [19] Klöck, D., “Quantum Computers”.Lee, J. and Kim, M. S., “Entanglement teleportation via Werner states”, Physical review letters, Vol.84, No.18, (2000), p.4236.

      [20] R. Horodecki, M. Horodecki, and P. Horodecki, “Teleportation, bell’s inequalities and inseparability”, Physics Letters A, Vol.222, No.1, (1996), pp:21-25.

      [21] Reilly, Michael H. “Temperature dependence of the short wavelength transmittance limit of vacuum ultraviolet window materials—II theoretical, including interpretations for UV spectra of SiO2, GeO2, and Al2O3”, Journal of Physics and Chemistry of Solids 31, No. 5, (1970), pp: 1041-1056.

      [22] Riebe, M., Haffner, H., Roos, C. F., & Hansel, W., “Deterministic quantum teleportation with atoms”, Nature, Vol.429, No.6993, (2002), p.734.

      [23] Shankar, R., “Principles of quantum mechanics”, Springer Science & Business Media, (2012).

      [24] S. Turgut., “Measurement process in quantum mechanics”, Vol.1,(2013).

      [25] Tang, C. L., “Fundamentals of quantum mechanics: for solid state electronics and optics”, Cambridge University Press, (2005).

      [26] Terhal, B. M., Doherty, A. C., & Schwab, D., “Symmetric extensions of quantum states and local hidden variable theories”, Physical review letters, Vol.90, No.15, (2003).




Article ID: 8755
DOI: 10.14419/ijams.v6i1.8755

Copyright © 2012-2015 Science Publishing Corporation Inc. All rights reserved.