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Abstract 
 

In this article, we propose a new family of distributions using the T-X family named as modified generalized Marshall-Olkin family of 

distributions. Comprehensive mathematical and statistical properties of this family of distributions are provided. The model parameters 

are estimated by maximum likelihood method. The maximum likelihood estimation under Type-II censoring is also discussed. Two life-

time data sets are used to show the suitability and applicability of the new family of distributions. For comparison purposes, different 

goodness of fit tests are used. 
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1. Introduction 

Adding one or more parameters to the existing distribution or compounding one or more distribution is the key concept to generate new 

distributions. During the recent past, new families of probability distributions have been defined by using some well-known distributions. 

The purpose behind all these attempts was to provide greater flexibility, especially, to encounter the tail behavior of the distribution. This 

helps modelling a variety of practical data. The most important and cited distributions include the Marshall–Olkin-G family by Marshall 

and Olkin [13], exponentiated-G family by Gupta et al. [9], beta-G family by Eugene et al. [8], transmuted-G family by Shaw and Buck-

ley [14], transformed-transformer-G family by Alzaatreh [1], among others. However, in many lifetime phenomena the incomplete or 

partial data are more attractable or reasonable instead of complete data due to sensitivity, time or cost considerations. This type of situa-

tion may be dealt with censoring methodology presented by Lawless [12], Balakrishnan & Aggarwala [6]. Some references covering 

these censoring schemes can be seen in Ghitany and Al-Awadhi [10], Iliopoulos and Balakrishnan [11], Ahmad [5] and many others.  

Shaw and Buckley [14] proposed a new method called transmuted maps which comprise the functional composition of cumulative densi-

ty function (CDF) of one distribution with inverse CDF of the other. Its general properties were studied in Bourguinon et al. [7]. The 

quadratic transmutation map has the following CDF, ( ) ( ) ( ) ( )
2

; , 1 ; ;F x G x G x     = + − . It is important to see that using above 

transmuted CDF and taking ( ) ,  0 1G x x x=    and 1 = , we can get the CDF, ( ) 22F x x x= − . The corresponding probability density 

function (PDF) is given by ( ) ( )2 1f x x= −  which is transmuted uniform density function. Alzaatreh et al. [2] proposed a versatile meth-

odology and named it as a T-X family. The CDF of the T-X family can be written as 

( )
( ) ;

; ( ; )

G x

c

F x r t dt

 

 =  , 

where ( );r t   is a baseline PDF of a random variable  ,T c d  for c d−      and ( ) ;G x   is a function of an arbitrary CDF, 

which is differentiable and monotonically non-decreasing. Also, ( ) ;G x   approaches to c  when X tends to minus infinity and ap-

proaches to d  when X  tends to infinity. 

Our objective, in this study, is to suggest a new family of distributions using T-X family. We take the earlier defined transmuted uniform 

as baseline distribution and ( ) 
( )
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;
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 in T-X family. The ( ) ;G x   is obviously a generalized form of Mar-

shall-Olkin transformation of a given exponentiated on ( );G x  . Thus, we have the following expression of the CDF of the proposed 

family of distributions. 
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where ( ), ,   = . Shape parameter   coming from the exponentiation of the ( );G x  , scale parameter   coming from its Marshall-

Olkin transformation and the parameter   of the baseline distribution. 

The rest of the article is outlined as follows. In section 2, the probability density function of the proposed modified generalized Marshall-

Olkin family of distributions is definitely and its statistical property, expansions of PDF and CDF, complete and incomplete moments, 

moment generating function and residual and reversed residual functions are derived. In section 3, we include estimation of parameters of 

the proposed family by maximum likelihood method for complete and partial data (censoring). The applications of the proposed family 

of distribution are discussed by considering one sub model to real data sets in section 4. In section 5, we give the conclusion of the pro-

posed study. 

2. The proposed probability distribution 

The PDF corresponding to CDF in (1) can be written as  
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where ( ),G x   and ( ),g x  are arbitrary CDF and PDF of a baseline distribution, respectively. The CDF and the PDF presented in (1) 

and (2), respectively, are more tractable for deriving the simple and close expressions for new family of distributions using ( ),G x  and

( ),g x   of any baseline distribution. Hereafter, we call the variable X having a density defined in (2) as the modified generalized Mar-

shall-Olkin (MGMo) random variable. 

Now, we define the reliability properties such as hazard rate and reversed hazard rate functions of the MGMo family of distributions. The 

hazard function ( )
( )
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;
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−
, using (1) and (2) is defined as 
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and the reversed hazard function ( )
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 = , using (1) and (2) is defined as 
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The quantile function of the proposed MGMo family of distributions is given as 
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,                                                                                                                                                      (3) 

 

where, (0,1)u Uniform . If we use 0.5u =  in (3), we obtain the median. Similarly, by taking the value of u between zero and one can 

find any quantile. Also, we can use (3) to generate random numbers from this family for simulation studies and other analyses. 

2.1.  Modified generalized marshall-olkin burr distribution: sub-model 

Consider ( ) ( ) ( )
2 2

2; , 2 1
x x

f x xe e


 
  

− − = −
  

and ( ) ( )
2

; , 1
x

F x e



 

− = −
  

, as the PDF and the CDF of the Burr distribution with 

parameters  and  . Then, using in (1) and (2), the CDF and the PDF of the Modified Generalized Marshall-Olkin Burr (MGMoB) 

distribution is obtained as 
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where 0x  , 0  , 0  , 0   and 0  . 

 
(A) 

 
 

(B) 

 
Fig. 1: Plots of PDF A) And CDF B) of the MGMoB Distribution for Different Values of Parameters. 

 

From Fig. 1, it is obvious that the proposed MGMoB distribution is quite capable to model symmetric and skewed data. This flexibility 

of modelling of any type of data is actually introduced by the addition of two new parameters in the Burr distribution. Since the MGMoB 

distribution is a main sub-model of our proposed family, we also provide some moment expressions. In Table 1, we give first five mo-

ments nu , 1,2,...,5n = , the Standard Deviation (SD), Coefficient of Variation (CV), Coefficient of Skewness (CS) and Coefficient of 

Kurtosis (CK) for different combinations of parameters. These values are calculated via R-language.  

 
Table 1: Moments, Standard Deviation, Coefficient of Variation, Coefficient of Skewness and Coefficient of Kurtosis of the MGMoB distribution 

nu  
0.2, 0.7,

2.5, 2

 

 

= =

= =
 

2, 0.7,

2.5, 2

 

 

= =

= =
 

2, 0.7,

0.5, 5

 

 

= =

= =
 

2, 0.7,

2.5, 0.5

 

 

= =

= =
 

1u  2.276275 1.598994 1.212651 0.8103147 

2u  5.407719 2.686941 1.625297 0.8190424 

3u  13.32609 4.733747 2.378736 0.9790851 
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4u  33.90638 8.727994 3.769107 1.340729 

5u  88.76051 16.81819 6.422578 2.057226 

SD 0.2262914 0.1301589 0.1547761 0.1624325 
CV 0.09941306 0.08140051 0.1276345 0.2004561 

CS 2.882902 3.493977 3.494493 3.812843 

CK 2.276275 1.598994 1.212651 0.8103147 

2.2. Expansion of PDF and CDF 

We use binomial expansion to represent the PDF and CDF in expanded form. The expanded form of the PDF expressed in summation 

form is more conveniently used to derive the other properties of the proposed family of distributions. 

The PDF in (2) can be rewritten as 
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Using the binomial expansion, we get 
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Putting above expressions in (5), we get 
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On simplification, we get 
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Further, using exponentiated-G (exp-G) distribution, ( ) ( ), ,
i

iG x H x = , and  
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The PDF in (6) can be rewritten as 
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Similarly, the CDF can be rewritten as 
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Using (7) and (8), important mathematical properties, for example, the ordinary and incomplete moments and moment generating func-

tion of the proposed family of distributions can easily be derived. 
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2.3. Moments, incomplete moments and moment generating function 

If iZ  follows exp-G distribution with power parameter i, the 
thK  moment of X, say ku  can be written as 
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The 
thK  central moments may be obtained as 
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Putting the value of ( )
j

E X  from (9) in (10), we get 
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The moments can be obtained by putting 1,2,...k =  in (9). Thus, we can also obtain the kurtosis and skewness.  

The 
thK  incomplete moment of the MGMo family of distributions is defined as 
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Using the PDF given in (7), we get 
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The first incomplete moment ( )1 s  can be obtained by taking 1k =  in (12) as  
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where ( ) ( ),

s

i is xh x dx 
−

=   is the 
thi  incomplete moment of the exp-G distribution. 

The moment generating function of the MGMo family of distributions is given in this section. Since we know that ( ) ( )tx

XM t E e= . 

Using (7), we can write the moment generating function (mgf) of the proposed family of distributions as follows. 
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where ( )iM t  is the mgf of iZ . 

2.4. Residual life and reversed residual life functions 

The 
thk  moment of residual life function of the MGMo family of distributions is given by 
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Using the PDF given in (7), we get 
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If we put 1k = , in (15), we obtain the mean residual life function. 

Similarly, the thk  moment of reversed residual life function can be obtained in the following way. By definition, the thk  moment of re-

versed residual life function is given by 
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Using the PDF given in (7), we get 
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If we set 1k =  in (16), we obtain ( )( )|E s X X s−  , which is interpreted as the waiting time elapsed since failure of an item on condi-

tion that this failure had occurred in (0, s).  

3. Inferential study 

Now, we present the maximum likelihood estimation of the parameters of the proposed family of distributions by using complete and 

partial data sets. 

3.1. Maximum likelihood estimation 

Let 1 2, ,..., nx x x are the n observed values of the proposed family of distributions with parameter vector  , then the likelihood function 

may be written as 
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Taking the logarithm of the above expression, we obtain the log-likelihood function as follows 
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Differentiating (17) with respect to  ,   and   and then equate to zero, we obtain the normal equations as follows 

 

( ) ( )

( ) ( ) 1

;
3 0

1 1 ;

n
i

i
i

ll G xn

G x





 

   =

 
  = − =

  + −
  

                                                                                                                                            (18) 

 

( )
( )

( ) ( )

( )

( ) ( ) ( )

( ) ( )1 1 1

; log ; 1 ; log ;
log ; 3 0

1 ; 1 1 ;

n n n
i i i i

i

i i ii i

ll G x G x G x G xn
G x

G x G x

 

 

     


    = = =

    −
= +   − − =     − + −      

                                                    (19) 

 

( ) ( )

( )
( )

( )

( )

( ) ( )

( )

1

1 1 1

; ; ; ;
1

; ; 1 ;

n n n
i i i i

i i ii i i

ll g x G x G x G x

g x G x G x

  



    
 

   

−

= = =

    
= + − − −    

 −         
   ( )

( ) ( )

( ) ( )

1

1

, ;
3 1 0

1 1 ;

n
i i

i i

G x G x

G x

 



 
 

 

−

=

 
− = 

+ −  
                  (20) 

 



24 International Journal of Advanced Statistics and Probability 

 

where 
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= . By solving nonlinear equations given in (18) to (20), numerically, the maximum 

likelihood estimates of the unknown parameters can be obtained. It is usually more convenient to use nonlinear optimization algorithms 

such as Newton-Raphson and Quasi-Raphson algorithms to find the estimates of the parameters. 

3.2. Type-II censoring 

In this sub-section, the Type-II censoring for the proposed family of distributions are discussed. Similarly, Type-I, random, progressive 

and Hybrid censoring may also be utilized to obtain MLEs of the parameters of the proposed family of distributions.  

Let 1 2, ,..., nx x x are the n observed values of the proposed family of distributions. In Type-II right censoring, t  observations out of the n  

are censored from the right side. The likelihood function may be written as 
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where ( )ix  is the order statistic of order i, and the log-likelihood function, expressed in terms of the original baseline distribution, reads  
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Differentiating the log-likelihood function with respect to  ,   and  , we obtain the normal equations. These normal equations can be 

solved analytically or numerically to find the estimates of the parameters. 

4. Applications of the MGMOB distribution 

In this section, we present the simulation study and real-life applications of the MGMoB model. We compare the sub model MGMoB of 

the proposed family of distributions, with Transmuted Burr (TB) distribution, Burr (BB) distribution (having two parameters), Burr (B) 

distribution (having one parameter), and Logistic-Weibull (LW) distributions using two real life data sets. For the ease in understanding 

of comparisons, we reproduce PDFs of the TB, the BB, the B and the LW distributions which are given in Appendix.  

4.1. Simulation study 

We perform Monte Carlo simulations to show the asymptotic property of the MLEs of the proposed MGMoB distribution. We calculate 

means, biases and mean-squared errors (MSEs) of each parameter for different sample sizes. To obtain the results, the process is replicat-

ed N=10,000 times for n = 10, 20, 30, 50, 100, 200 and 300. The simulated means, biases and MSEs are provided in the Table 2. The bias 

and MSE for an estimator ̂  are defined as 
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Table 2: The Simulated Means, Biases and MSEs of the MGMoB model 

n   2 =  0.2 =  1 =  0.5 =  

10 

Mean 4.329773 2.169881 2.384656 1.619396 

Bias 2.329773 1.969881 1.384656 1.119396 

MSE 5.427842 3.880431 1.917272 1.253047 
 

20 

Mean 3.448458 1.984185 1.243829 1.595047 

Bias 1.448458 1.784185 0.243829 1.095047 

 
 

MSE 2.098031 3.183316 0.059453 1.199128 
Mean 2.955297 1.88469 1.212726 1.603641 

30 
Bias 0.955297 1.68469 0.212726 1.103641 

MSE 0.912592 2.83818 0.045252 1.218023 

 Mean 2.115511 1.890305 1.155103 1.363081 

50 Bias 0.115511 1.690305 0.155103 0.863081 

 MSE 0.013343 2.857131 0.024057 0.744909 
 Mean 2.085921 1.842682 1.092736 1.048031 

100 Bias 0.085921 1.642682 0.092736 0.548031 

 MSE 0.007382 2.698404 0.0086 0.300338 
 Mean 2.070623 1.89748 1.023095 0.941854 

200 Bias 0.070623 1.69748 0.023095 0.441854 

 MSE 0.004988 2.881438 0.000533 0.195235 
 Mean 1.98498 1.887528 0.98492 0.625376 

300 Bias -0.01502 1.687528 -0.01508 0.125376 
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 MSE 0.000226 2.847751 0.000227 0.015719 

 

 

4.2. Applications using real life data sets 

In this subsection, we first describe the data sets which we have used in this study. The data 1 represent the strength measured in GPA, 

for single carbon fibers and impregnated 19 1000-carbon fiber tows. Single fibers were tested under tension at gauge lengths of 1, 10, 20, 

and 50 mm. Impregnated tows of 1000 fibers were tested at gauge lengths of 20, 50, 150 and 300 mm and we are using 20mm, gauge 

length data. We considered the data on single fibers of 20mm, which is given in Appendix. The data 2 represents the life of fatigue frac-

ture of Kevlar 373/epoxy sub- jected to constant pressure at 90 % stress level until all had failed. The data 2 were previously used by 

Abdul-Moniem and Seham [3]. The data 2 are also given in Appendix.  

The different goodness of fit tests and statistics for the MGMoB, the TB, the BB, the B, and the LW distributions are discussed. For this 

purpose, Anderson-Darling (A), Cramer–von Mises (W*), Akaike information criterion (AIC), Bayesian information criterion (BIC), 

Consistent Akaike information criterion (CAIC) and Hannan-Quinn information criterion (HQIC) are considered. The general criterion in 

distribution theory is to choose the model as the best model among competitor models having minimum value of these statistics. The 

values of the W*, the A, the AIC, the CAIC, the BIC and the HQIC are calculated in R Language (using model Adequacy package) to 

highlight the performance of the MGMoB distribution. These results are presented in Tables 3 and 4 for data sets 1 and 2. The Table 5 

consists of values of the Kolmogorov-Smirnov test (KS) used a measure of goodness of fit for data sets 1 and 2. 

 
Table 3: The W*, A, AIC, CAIC, BIC, HQIC for the Data1 

Model W* A AIC CAIC BIC HQIC 

MGMoB 0.0252 0.2027 110.141 110.7205 119.357 113.8173 
TB NA NA -149.53 -149.195 -142.626 -146.781 

BB 0.1067 0.6923 112.024 112.193 116.633 113.863 

B 0.0578 0.3868 190.302 190.357 192.606 191.221 
LW 0.1039 0.6382 114.085 114.428 120.997 116.842 

 
Table 4: The W*, A, AIC, CAIC, BIC, HQIC for the Data2 

Model W* A AIC CAIC BIC HQIC 

MGMoB 0.098211 0.583059 251.1683 251.7316 260.4912 254.8942 

TB NA NA -500.464 -500.7979 -507.456 -503.259 
BB 0.222052 1.274775 255.003 255.1674 259.6645 256.866 

B 0.208616 1.20164 276.6394 276.6935 278.9702 277.5709 

LW 0.150799 0.907659 254.545 254.8783 261.5372 257.3394 

 
Table 5: Kolmogorov-Smirnov (KS) Test and Probability Values 

 Data 1 Data 2 

Model KS P-value KS P-value 

MGMoB 

TB 
BB 

B 

LW 

0.0529 0.9857 0.08733 0.5776 

4.9003 < 2.2e-16 2.0135 2.22e-16 
0.0736 0.8176 0.15517 0.04598 

0.3393 7.93E-08 0.20432 0.00293 

0.0588 0.96 0.08375 0.6300 

 

From the results in Tables 3, 4 and 5, it may be conclusively stated that the MGMoB model is a better choice for modelling the consid-

ered data sets. This finding highlights the importance of an additional parameter in the distribution. As far as, estimation of parameters is 

concerned, the MLEs, based on the above mentioned data sets, of all parameters for the proposed and competing distributions are ar-

ranged in the Table 6 in the Appendix. 

For further demonstration, the fitted distribution and histograms of the data for the MGMoB along with other distributions are given in 

Fig. 2 for both data sets. The empirical CDF plots and PP-plots of the MGMoB distribution are given in Fig.s 3 and 4 for both data sets. 
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Fig. 2: Plots of Fitted Distributions and Histogram of Data 1a) and 2b). 
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(B) 

 
Fig. 3: Plots of Sample and Empirical CDFS of MGMOB Distribution of Data 1A) and 2B). 
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(B) 

 
Fig. 4: PP-Plots of the MGMOB Distribution of Data 1 A) and 2 B). 

5. Conclusion 

In this article, a new family of distributions is defined by using one of the important methods called T-X family. The explicit mathemati-

cal and reliability properties of the proposed family of distributions were derived. The moments, incomplete moments and moment gen-

eratign function were simplified by using the binomial expansion. The estimation of parameters has been dealt by maximum likelihood 

method for complete and partial data (Type-II censoring). A special case of the proposed family using the Burr distribution has been 

studied, using two real lifetime data sets, to establish the appropriateness of the proposed family of distributions. The results clearly 

showed the better goodness of fit of the proposed model.  
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