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Abstract 

 

In Neyman’s causal model (NCM), each subject participating in a two-arm randomized trial has a pair of potential 

outcomes – one outcome would be observed under treatment and another under control. In the stochastic version of 

NCM the two potential outcomes are viewed as possibly non-degenerate random variables with finite expectations and 

variances. The subject-level treatment effect is the expected outcome under treatment minus that under control, and the 

average treatment effect is the arithmetic mean of the subject-level effects. In the present paper properties of the 

ordinary “difference of means” estimator and its associated variance estimator are examined in the completely 

randomized design with stochastic potential outcomes. Estimation theory is developed under randomization distribution 

without commitment to any particular probability model for enrollment, because in real trials subjects are not enrolled 

by a sampling mechanism with known selection probabilities. It is shown that in this theoretical framework, the 

“difference of means” estimator is asymptotically normal and consistent for the average treatment effect in the study 

cohort, while its associated variance estimator is conservative, producing confidence intervals with at least nominal 

asymptotic coverage. The proofs are not trivial because in the randomization framework sample means under treatment 

and control are correlated random variables. 
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1. Introduction 

The purpose of randomized trials is to make inference about treatment effects. In the original version of Neyman’s 

causal model (NCM), a treatment effect in a particular set (  ) of N subjects was defined as follows [1-3]. Let 

i represent the physical identity of a given subject, and let Y iT  and Y iC denote the potential outcomes of the i th 

subject under treatment and under control intervention, respectively. If the i th subject is treated, the observed outcome 

is Y iT , while under control it is Y iC . These potential outcomes, although not jointly observable, were defined as real 

numbers having objective simultaneous existence even prior to treatment assignment. The subject-level treatment effect 

is Y Yi iT iC   , and the average treatment effect in  is the arithmetic mean of the subject-level effects  
 

1 1 1
1 1 1

N N NN N Y N Yi iT iCi i i
         

 

 

Because the concept of potential outcomes as simultaneously existing real numbers does not allow for stochastic effects 

of post-interventional factors such as random measurement error, Neyman [4] proposed a more general framework with 

stochastic potential outcomes. In the stochastic NCM, Y iT  and Y iC are viewed as possibly non-degenerate random 

variables with finite but otherwise unconstrained expectations ( ,y yiT iC ) and variances ( ,iT iC  ). If the i th subject 

is treated, the observed outcome Y i  is a realization of Y iT , while under control it is a realization of Y iC .The subject-

level causal effect is y yi iT iC   . If everyone in   is treated, the expected mean outcome is  
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NN yT iTi
   

 

 

Similarly, if everyone in   receives the control intervention, the expected mean outcome is 
  

1
1

NN yC iCi
   

 

 

The average treatment effect in   is 
 

1
1

   
NN i T Ci

     

 

It should be noted that stochastic NCM contains deterministic potential outcomes as a special case ( 0, 0iT iC    for 

all i ). Hence, any estimator with desirable statistical properties in the stochastic framework will have these properties 

in the deterministic framework, while the converse is not necessarily true (i.e., the stochastic framework makes weaker 

assumptions).  

   For causal inference in randomized experiments it is important to make a distinction between internal and external 

validity of estimation. Suppose that   denotes the set of all subjects who participated in the trial, and let   denote the 

average treatment effect in  . Similarly, let ' denote the set of all subjects who were eligible for inclusion in the trial 

during the accrual period ( ' ) and let '  denote the average treatment effect in ' . We will say that a point 

estimator of the average treatment effect is internally valid if it is consistent for   under randomization distribution, and 

is externally valid if it is consistent for '  in the process of accrual followed by randomization. Similarly, an interval 

estimator is internally valid if it has at least nominal coverage for  under randomization distribution, and is externally 

valid if it has at least nominal coverage for ' in the process of accrual followed by randomization.  

   To establish internal validity, properties of estimators must be examined under randomization distribution without a 

probability model for enrollment. In contrast, for external validity these properties must be studied in the process of 

accrual followed by randomization. The latter is straightforward when subjects are selected from '  by a sampling 

mechanism with known selection probabilities, such as simple random sampling, cluster sampling, stratified sampling, 

etc. However, in most clinical trials subjects are not enrolled by a mechanism with known selection probabilities. 

Hence, external validity usually depends on assumptions about accrual process that are not fully verifiable. Given these 

considerations, it can be recommended that any estimator developed under an assumed probability model for enrollment 

should also have a demonstrated property of internal validity under randomization distribution.  An internally valid 

estimate of   can be used as a reasonable guess about average treatment effect in patients similar to those actually 

enrolled in the trial, whether or not these patients happen to be representative of the entire population of eligible 

subjects.  

   It should be noted that formal proofs of internal validity of a given interval estimator may be somewhat challenging 

because randomization induces correlation between functions of subject-level outcomes observed under alternative 

interventions. For example, arithmetic means of subject-level outcomes in the treatment and the control arms are 

correlated under randomization distribution [5]. These randomization-induced correlations must be taken into account 

in the mathematical formalism for proof of internal validity of a given interval estimator [5], [6]. In particular, because 

treatment and control means are correlated random variables, the variance of their difference is not the sum of 

individual variances, and the standard proofs of the Central Limit Theorem (CLT) for the “difference of means” are not 

applicable. 

   In the present paper the framework of stochastic NCM is applied to the completely randomized design to establish 

internal validity of one of the most frequently used interval estimators. Let T and C  denote the sets of subjects 

assigned to treatment and to control, respectively, and define for each intervention arm the means of subject-specific 

observed outcomes  
 

1ˆ n YT iT i T
   

, 1ˆ n YC iC i C
   

 

 

Let ˆ ˆ ˆT C    . The ordinary “sum of variances” estimator is  

 

1 21 2 ˆˆ ( 1) ( )( 1) ( )
ˆˆ ( )

n Yn Y C i CT i T i Ci TV
n nT C




      
                                                                                     

(1) 

 

A well-known interval estimator of   is 
1/2ˆ ˆˆ ( )/2z V  . Our objective is to show that under completely randomized 

treatment assignment, when N is not too small, this interval estimator has at least nominal coverage probability for  . 

The rest of this paper is organized as follows. Mathematical theory is presented in Section 2. A numerical example 

illustrating the proposed theory is considered in Section 3. Section 4 contains discussion of the main points of the paper.  
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2. Mathematical theory 

In the completely randomized design we take from   a simple random sample of nT  subjects and allocate them to the 

treatment arm, while the remaining nC  subjects are allocated to the control arm. With this randomization mechanism, 

nT and nC  are fixed by design. If subjects are enrolled consecutively (one after another) as is usually the case in 

clinical trials, the completely randomized design can be implemented by creating a randomization plan as follows. Take 

from the set of the first N  natural numbers (1, 2… N ) a simple random sample ( S ) of nT  numbers and assign 

subjects whose order of enrollment is in S  to treatment, with the remaining subjects assigned to control. 

   To prove internal validity of 1/2ˆ ˆˆ ( )/2z V   in this data-generating process, we will need to show that ̂  is 

consistent and asymptotically normal and ˆˆ ( )V   is conservative. To state these results more formally and obtain general 

proofs, define on   the following finite population means, variances, and covariance of the subject-level parameters 
 

1( )
1

NE NiT iTi
   

, 1( )
1

NE NiC iCi
   

 
 

1 2( ) ( )
1

NV y N yiT iT Ti
  

, 1 2( ) ( )
1

NV y N yiC iC Ci
  

  
 

1( , ) ( )( )
1

NCov y y N y yiT iC iT T iC Ci
    

 

 

Also define for the treatment and the control arms the means of subject-specific expected outcomes  
  

1m n yT iTi TT
   , 1m n yC iCi CC

    

 

Given that the r th set of subjects is randomized to treatment, responses ,Y i Ti  
 
are assumed to be independent, 

although not necessarily identically distributed. This conditional independence assumption is highly plausible when the 

outcome of one subject does not influence the outcomes of the other subjects (e.g., as is usually the case in medical 

trials with non-contagious outcomes). Given that the r th set of subjects is randomized to treatment, expectation of 

T̂ in these subjects is  
 

1 1ˆ( | ) ( | )E r n E Y r n y mT i iT Ti TT Ti T
      

 

 

Marginally with respect to treatment assignment, by the law of the iterated mean ˆ ˆ( ) [ ( | )] ( )E E E r E mT T T T     . 

This last equality follows from the fact that T  is a simple random sample from   and hence mT , which is the sample 

mean of y iT  in T  is unbiased for the population mean of y iT  in , which is T . Of course, by the same argument, 

ˆ( ) E C C  . Because expectation of a difference is a difference of expectations (even for correlated random variables), 

the expectation of ˆ ˆ ˆ( ) T C    is equal to  . In other words, in this data-generating process, the difference of sample 

means is unbiased for the true treatment effect. 

   We now consider the variance of ̂ . Again, given that the r th set of subjects is randomized to treatment, responses 

,Y i Ti   are independent, and the variance of T̂  in these subjects is 
 

2 1ˆ( | ) [ ( ) | ] ( ) /V r n V Y r n nT i iT Ti TT Ti T
     

 

 

Since 1n iTi TT


   is a sample mean of iT in T , its expectation marginally with respect to treatment assignment is 

the population mean 1
1

NN iTi


 
. Hence,  

 

1 1ˆ[ ( | )] ( ) / ( ) /
1

NE V r E n n N nT iT T iT TT i T i
      

 

 

Now, by the law of variance decomposition, marginally with respect to treatment assignment 
 

( ) ( )1 1ˆ ˆ ˆ( ) [ ( | )] [ ( | )] ( ) ( )
1 1

E N n V yiT T iTNV E V r V E r n N V mT T T iT TT i n N nT T


   

        
                                    (2) 

 

In the last expression, ( )V mT is just the variance of the sample mean of y iT  in the process of simple random sampling 

from a finite population (  ), and ( ) / ( 1)N n NT  is the finite population correction, well-known from elementary 

sampling theory. Of course, same arguments apply to the control set. Hence, 
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( ) ( )
ˆ( )

1

E N n V yiC C iCV C
n N nC C





 


                                                                                                                                  (3) 

 

Obviously, the variance of ̂ can be written as ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) 2 ( , )V V V CovT C T C T C         . The covariance term 

turns out to be equal to 
 

ˆ ˆ( , ) ( , ) / ( 1)Cov Cov y y NT C iT iC    
                                                                                                                           

(4) 

 

Neyman [1], [2] proved this result for the case of deterministic potential outcomes (i.e.,  0iT iC    for all i ) 

assuming equal allocation ( n nT C ). However, equation (4) also holds in the more general formulation with stochastic 

potential outcomes and equal or unequal allocation. The general proof of (4) is given in Appendix 1. It follows that 
 

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) 2 ( , )V V V CovT C T C         
 

( ) ( ) 2 ( , )( ) ( )

1 1 1

E N n V y Cov y yE N n V y iC C iC iT iCiT T iT

n N n n N n NT T C C

 
    

  
                                                                    

(5) 

 

It is seen that for any given /p n NT T , /p n NC C , ( )E iT , ( )E iC , ( )V yiT , ( )V yiC and ( , )Cov y yiT iC , 

expression (5) goes to zero with increasing  N . Hence, ̂ is consistent for  . However, (5) itself cannot be estimated 

consistently because ( )E iT and ( )V yiT cannot be estimated separately and likewise for ( )E iC and ( )V yiC , and 

( , )Cov y yiT iC  is not identifiable. Nevertheless, it will be shown below that ˆˆ ( )V  is a conservative estimator of ˆ( )V  , 
ˆ ˆˆ[ ( )] ( )E V V  .

 
   Expectation of ˆˆ ( )V   is the sum of expectations of the two terms in (1). It is shown in Appendix 2 that these 

expectations are 
 

1 2ˆ( 1) ( ) ( ) ( )
[ ]

1

n Y E N V yT i Ti T iT iTE
n n N nT T T

 
    


                                                                                                  (6)

  

1 2ˆ( 1) ( ) ( ) ( )
[ ]

1

n Y E V yNC i Ci C iC iCE
n n N nC C C

 
    


                                                                                                 (7) 

 

( ) ( )( ) ( )ˆˆ[ ( )]
1 1

E V yE N V y NiC iCiT iTE V
n N n n N nT T C C


    

 
                                                                                            (8) 

 

To prove that ˆ ˆˆ[ ( )] ( )E V V   for any joint frequency distribution of { , , , }y yiT iC iT iC   in  , consider the ratio 
ˆ ˆˆ( ) / [ ( )]V E V  , which is (5) divided by (8). In this ratio, the numerator (5) takes its maximum value for 

( , ) 1Corr y yiT iC   when ( , ) ( ) ( )Cov y y V y V yiT iC iT iC . Hence, to prove that (1) is unbiased or conservative for 

the true variance in (5), it is sufficient to verify that 
 

( ) ( )( ) ( )( ) ( )
2

1 1 1

V y V yE N n V yE N n V y iT iCiC C iCiT T iT

n N n n N n NT T C C

 
    

  
 

 

( ) ( )( ) ( )

1 1

E V yE N V y NiC iCiT iT

n N n n N nT T C C


  

 
 

 

After subtracting from both sides of this inequality ( ) /E niT T  and ( ) /E niC C and multiplying both sides by 

( 1) /N N , we arrive at  
 

( ) ( )( ) ( )( ) ( )
2

V y V yN n V y V yN n V y V yiT iCC iC iCT iT iT

N n N n N n nT C T C


   

                                                                

(9) 

 

Subtracting the left side of (9) from both sides, we obtain 
 

( ) ( )( )( )
2 0

V y V yV yV y iT iCiCiT

N N N
    

 

( )( ) 2[ ] 0
V yV y iCiT

N N
   
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This proves that the standard variance estimator (1) is unbiased or conservative given any joint distribution of 

{ , , , }y yiT iC iT iC   in  . It is worth emphasizing that for given pT , pC , ( )E iT , ( )E iC , ( )V yiT , ( )V yiC and 

( , )Cov y yiT iC , the ratio of (5) to (8) does not go to unity with increasing N . In fact, as N  , 1N N  , and 
 

1 1ˆ [ ( ) ( )] [ ( ) ( )] 2 ( , )( )

ˆ 1 1[ ( )] [ ( ) ( )] [ ( ) ( )]

p E p V y p E p V y Cov y yV iT C iT iC T iC iT iCT C

E V p E V y p E V yiT iT iC iCT C

 

  

    


   
                                                    (10) 

 

Expression (10) does not depend on N , and as we already showed, cannot exceed unity. Because ˆ ˆˆ( ) / ( )V V   also 

goes to (10) in probability (see Appendix 2), it follows from Slutsky’s Theorem [7] that confidence intervals 

constructed based on (1) in the usual manner as 1/2ˆ ˆˆ ( )/2z V   have at least nominal asymptotic coverage, and the 

corresponding Wald-type hypotheses tests asymptotically do not exceed the nominal alpha-level, provided that ̂  is 

asymptotically normal. The classical proofs of the CLT are not applicable in the randomization framework due to the 

correlation of T̂ and ˆC , which does not go to zero with increasing N , as shown in Appendix 1. However, Freedman 

[6] proved asymptotic normality of ̂  in the completely randomized design with deterministic potential outcomes. A 

more general proof applicable to our current stochastic formulation is given in Appendix 3. It is shown that for large
 
N  

1/2ˆ ˆˆ( ) / ( )V   is approximately normally distributed with mean zero and variance given by (10). Because this variance 

cannot exceed unity, we have for large
 
N approximately 1/2ˆ ˆˆPr[ ( ) / ( ) ] 11 /2 1 /2z V z           , which can be 

used for hypothesis testing, and 1/2 1/2ˆ ˆ ˆ ˆˆ ˆPr[ ( ) ( ) ] 11 /2 1 /2z V z V              , which is a statement of coverage 

probability of nominally (1 ) 100%   confidence intervals. The actual coverage depends on individual terms in (10).  

3. Numerical example 

The aim of this section is to illustrate the main theoretical results derived in Section 2. For this purpose, consider a set 

of 4 subjects in Table 1. Each subject can receive either treatment or control. Suppose that the outcome of interest is a 

binary variable, representing for example vital status at 5 years of follow-up (1=alive, 0=dead). Because the outcomes 

are binary, expectations y iT and y iC  represent the 5-year survival probabilities under treatment and under control, 

respectively. Also, for binary outcomes, (1 )y yiT iT iT   , (1 )y yiC iC iC   . If all 4 subjects are treated, their 

average 5-year survival probability is 0.6T  , while under control it is 0.25C  . The average treatment effect is 

0.6 0.25 0.35    .  

 
Table 1 Expectations and Variances of Binary Stochastic Potential Outcomes for a Set of Four Subjects 

Subject y iT  y iC  iT  iC  

1 0.9 0.3 0.09 0.21 

2 0.8 0.2 0.16 0.16 
3 0.1 0.1 0.09 0.09 

4 0.6 0.4 0.24 0.24 

Mean 0.60 0.25 0.145 0.175 
Var 0.095 0.0125 

   

( , ) 0.02Cov y yiT iC   

 

Suppose that in order to estimate this treatment effect, we take a simple random sample of 2 subjects and allocate them 

to treatment, while the remaining 2 subjects are allocated to control. Because we only have 4 subjects and the observed 

outcomes are binary, the sample space for this data-generating process contains only 6 possible treatment assignments 

with 16 possible realizations given each assignment, which are written down explicitly in Table 2. The probability of 

each realization given a particular treatment assignment can be computed by noting that individual responses are 

independent; hence their joint probability is the product of marginal probabilities. 

   For example, given that subjects 1 and 2 are assigned to treatment and subjects 3 and 4 are assigned to control (T/C = 

1,2/3,4), the probability that each of the four subjects will be alive at 5 years (i.e., R1 in Table 2) 

is 0.9 0.8 0.1 0.4 0.02881 2 3 4y y y yT T C C        , and the marginal probability of this assignment and outcome 

combination is 0.0288/6 (we divide by 6 because there are 6 equally likely treatment assignments). The second 

realization (R2) in Table 2 under the same assignment (T/C = 1,2/3,4) differs from the first only in that subject 4 did not 

survive, so the conditional probability of that realization given that particular treatment assignment is  

(1 ) 0.9 0.8 0.1 0.6 0.04321 2 3 4y y y yT T C C         , and the marginal probability of this assignment and outcome 

combination is 0.0432/6. The probabilities of all other realizations are computed based on the same reasoning.  
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Table 2 Simulated Example: Sample Space with Associated Probabilities 

 Observed outcomes     Pr(R) given T / C 

R YT  'YT  YC  'YC  T̂  ˆC  ̂  ˆˆ ( )V   1,2/3,4 1,3/2,4 1,4/2,3 2,3/1,4 2,4/1,3 3,4/1,2 

1 1 1 1 1 1 1 0 0 0.0288 0.0072 0.0108 0.0096 0.0144 0.0036 

2 1 1 1 0 1 0.5 0.5 0.25 0.0432 0.0108 0.0972 0.0144 0.1296 0.0144 

3 1 1 0 1 1 0.5 0.5 0.25 0.2592 0.0288 0.0432 0.0224 0.0336 0.0084 
4 1 1 0 0 1 0 1 0 0.3888 0.0432 0.3888 0.0336 0.3024 0.0336 

5 1 0 1 1 0.5 1 -0.5 0.25 0.0072 0.0648 0.0072 0.0864 0.0096 0.0024 

6 1 0 1 0 0.5 0.5 0 0.5 0.0108 0.0972 0.0648 0.1296 0.0864 0.0096 
7 1 0 0 1 0.5 0.5 0 0.5 0.0648 0.2592 0.0288 0.2016 0.0224 0.0056 

8 1 0 0 0 0.5 0 0.5 0.25 0.0972 0.3888 0.2592 0.3024 0.2016 0.0224 

9 0 1 1 1 0.5 1 -0.5 0.25 0.0032 0.0008 0.0012 0.0024 0.0036 0.0324 
10 0 1 1 0 0.5 0.5 0 0.5 0.0048 0.0012 0.0108 0.0036 0.0324 0.1296 

11 0 1 0 1 0.5 0.5 0 0.5 0.0288 0.0032 0.0048 0.0056 0.0084 0.0756 

12 0 1 0 0 0.5 0 0.5 0.25 0.0432 0.0048 0.0432 0.0084 0.0756 0.3024 
13 0 0 1 1 0 1 -1 0 0.0008 0.0072 0.0008 0.0216 0.0024 0.0216 

14 0 0 1 0 0 0.5 -0.5 0.25 0.0012 0.0108 0.0072 0.0324 0.0216 0.0864 
15 0 0 0 1 0 0.5 -0.5 0.25 0.0072 0.0288 0.0032 0.0504 0.0056 0.0504 

16 0 0 0 0 0 0 0 0 0.0108 0.0432 0.0288 0.0756 0.0504 0.2016 

R = realization; YT and 'YT are the observed outcomes of the two subjects assigned to treatment, YC  and 'YC  are the observed outcomes of the 

two subjects assigned to control; T is the set of subjects assigned to treatment, C is the set of subjects assigned to control.  

 
We can now verify the key equations in Section 2. The theory in Section 2 predicts that ˆ( ) 0.6E T  , ˆ( ) 0.25E C  , and  

ˆ( ) 0.35E   . This can be verified by computing these expectations directly from the sample space (Table 2) 
 

ˆ( ) (1 0.0288 1 0.0432 ... 0 0.2016) / 6 0.6E T          

ˆ( ) (1 0.0288 0.5 0.0432 ... 0 0.2016) / 6 0.25E C          

ˆ( ) (0 0.0288 0.5 0.0432 ... 0 0.2016) / 6 0.35E             
 

Similarly, to verify the variance and covariance expressions (2)-(5), and expectation of ˆˆ ( )V  in (8) we may compute 

directly from the sample space 
 

2 2 2ˆ( ) [(1 0.6) 0.0288 (1 0.6) 0.0432 ... (0 0.6) 0.2016] / 6 0.3125 / 3V T             
 

2 2 2ˆ( ) [(1 0.25) 0.0288 (0.5 0.25) 0.0432 ... (0 0.25) 0.2016] / 6 0.275 / 3V C             
 

ˆ ˆ( , ) [(1 0.6)(1 0.25) 0.0288 (1 0.6)(0.5 0.25) 0.0432 ...Cov T C            
  

... (0 0.6)(0 0.25) 0.2016] / 6 0.02 / 3       
 

2 2 2ˆ( ) [(0 0.35) 0.0288 (0.5 0.35) 0.0432 ... (0 0.35) 0.2016] / 6 0.6275 / 3V              
 

ˆˆ[ ( )] (0 0.0288 0.25 0.0432 ... 0 0.2016) / 6 0.695 / 3E V           
 

Same results can be obtained by applying (2)-(5) and (8) to data in Table 1 
 

0.145 4 2 0.095 0.3125
ˆ( ) ( )

2 4 1 2 3
V T


  


 

 

0.175 4 2 0.0125 0.275
ˆ( ) ( )

2 4 1 2 3
V C


  


 

 

ˆ ˆ( , ) 0.02 / 3Cov T C     
 

0.145 4 2 0.095 0.175 4 2 0.0125 2 0.02 0.6275ˆ( ) ( ) ( )
2 4 1 2 2 4 1 2 4 1 3

V 
  

     
  

 
 

0.145 4 0.095 0.175 4 0.0125 0.695ˆˆ[ ( )] ( ) ( )
2 4 1 2 2 4 1 2 3

E V      
 

 

 

For illustration of asymptotic results, the following simulation study was performed in SAS 9.3. A total of 50 copies of 

the dataset in Table 1 were created, resulting in a set of 200 subjects. From this set, a simple random sample of 100 

subjects was obtained and assigned to treatment, while the remaining 100 subjects were assigned to control. The 

treatment effect was estimated as in Section 2 by the difference of means ˆ( ) , and the variance of ̂  was estimated by 

(1). This process was repeated 1,000 times. Of course, as before 0.35  . From (5), ˆ( ) 0.0039V    and from (8) 
ˆˆ[ ( )] 0.0043E V   . Based on 1,000 randomizations, the observed frequency distribution of ̂  was nearly normal, with 

mean 0.3499 and variance 0.0038. The observed mean of ˆˆ ( )V  was 0.0043 and the observed coverage of 95% 

confidence intervals 1/2ˆ ˆˆ1.96 ( )V   was 97.0%.  
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4. Discussion 

Randomization-based inference with stochastic potential outcomes was introduced by Neyman [4] in the context of 

agricultural experiments, where he considered a comparison of s  interventions in a randomized experiment performed 

on a field of N  plots (subjects). The yield of each plot under a given intervention was assumed to be a normal random 

variable with constant variance taking the same value for all plots under all interventions. This is similar to our current 

formalism, except that the assumptions of normality and constant variance were not made here (e.g., the subject-level 

responses may even be Bernoulli variables, as in Section 3). The average treatment effect (  ) in Neyman [4] was 

defined for any two interventions as in our Section 2. To estimate  , Neyman [4] assumed that the N  plots were 

grouped in 'n  blocks of s  plots per block, where s  is also the number of interventions being compared. Hence, the 

number of plots per block was constrained to be equal to the number of interventions. With two interventions (treatment 

and control), there are two plots per block. Randomization was performed within each block by randomly distributing 

the s  plots to the s  interventions, one plot per intervention. This was repeated for each block. Neyman [4] referred to 

this process as the method of randomized blocks.  

   Because in Neyman’s [4] analysis, the number of plots per block was constrained to be the same as the number of 

interventions being compared, his mathematical formalism cannot be used to describe a completely randomized design. 

In particular, we cannot obtain expectation or variance expressions for ̂  in a two-arm completely randomized trial by 

simply setting the number of blocks in Neyman’s [4] equations to one, because this would imply in his mathematical 

formalism that only two subjects are being randomized. In a two-arm completely randomized trial with more than 2 

subjects, Neyman’s [4] equations no longer apply, which was the main motivation for the present paper. In a two-arm 

trial with more than 2 subjects, Neyman’s equations describe a block-randomized design, but with the assumption of 

only two subjects per block, and with restrictions on the variance components as already described. Since these 

assumptions are too restrictive for trials involving human subjects, it may be appropriate to generalize Neyman’s [4] 

equations to block-randomized designs with these assumptions removed. This may be a subject of further research. It 

should also be noted that Neyman [4] did not study the asymptotic distribution of ̂ . A proof of the CLT for ̂  under 

completely randomized assignment with stochastic potential outcomes is given in Appendix 3 of the present paper.  

   Historically, most work on Neyman’s causal model was done under the assumption of deterministic potential 

outcomes [6, 8-10]. This formalism goes back to Neyman’s earlier paper [1], [2]. For recent work on this formalism see 

Freedman [6], Schochet [8], Lin [9], and Miratrix et al [10]. Freedman [6] established results for interval estimation 

under completely randomized treatment assignment similar to those obtained in the present paper but with the 

assumption of deterministic potential outcomes.  Freedman [6] also showed that in the completely randomized design 

the ordinary least-squares variance estimator from the linear model fitted with or without covariates does not have 

internal validity (i.e., may produce anticonservative confidence intervals). Lin [9] showed that this problem is corrected 

by the robust (sandwich) variance estimator. Schochet [8] studied internal validity of certain estimators in the cluster 

randomized design, while Miratrix [10] considered block-randomized design and post-stratification.  

   To what extent findings on internal validity of estimators obtained under the assumption of deterministic potential 

outcomes [6, 8-10] hold in the more general stochastic framework is not immediately obvious. It is certainly possible 

for a given interval estimator to be conservative in the deterministic framework and become anticonservative with 

stochastic potential outcomes [11]. In fact, stochastic generalization may even invalidate certain point estimators of the 

average treatment effect. For example, the classical “instrumental variables” (IV) estimator that can be used to adjust 

for non-compliance in clinical trials depends on the assumption of simultaneously existing compliance states defined 

under assignment to alternative interventions [12]. When this assumption is relaxed by allowing for compliance 

probabilities, the IV argument loses its generality, and the IV estimator becomes inconsistent for any well-defined 

treatment effect except under certain special conditions (such as full compliance in one intervention arm) [12]. Because 

the choice between deterministic and the more general stochastic frameworks has practical implications for the choice 

of estimators, it is important to discuss the physical meaning of the subject-level variance components{ , }iT iC  .  

   The purpose of the { , }iT iC   terms is to allow for possible dependence of potential outcomes on uncontrolled initial 

conditions under which the assigned interventions are actually administered and to represent the stochastic effects of 

post-interventional factors, such as random measurement error. For illustration of this point, consider the following 

example. Patients with low and intermediate risk prostate cancer are often managed with active surveillance, which 

involves among other things random biopsies of the prostate gland (e.g., once every two years) to assess for evidence of 

disease progression. A biopsy is performed by taking a predetermined number (usually 12) of tissue specimens 

(“cores”) from the prostate gland for microscopic examination. The biopsies are random because cancerous regions in 

the gland usually cannot be distinguished from normal tissue until the specimens are examined under the microscope. 

The proportion of positive cores (i.e., the number of cores with prostate cancer divided by the total number of cores) is 

an important indicator of disease progression. Suppose that we perform a randomized trial of a new dietary supplement 

(versus placebo) believed to reduce the risk of prostate cancer progression in patients on active surveillance, with the 

proportion of positive cores at 2 years from randomization as one of the end-points. If the i th subject is treated, the 

proportion of positive cores is Y iT , while under control it is Y iC .  
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   The framework with deterministic potential outcomes assumes that both Y iT  and Y iC  have definite values prior to 

randomization. In reality however Y iT  and Y iC  are sample proportions and hence cannot take definite values until the 

random biopsy sample has been collected (even if there are no other stochastic effects of post-interventional factors). 

This is recognized in the stochastic NCM, where prior to the actual measurement of the outcome, Y iT  and Y iC  are 

viewed as possibly non-degenerate random variables with expectations { , }y yiT iC and variances{ , }iT iC  . If the i th 

subject is treated, the observed proportion of positive cores (Y i )  is a realization of  Y iT , while under control it would 

be a realization of Y iC .The subject-level parameters { , , , }y yiT iC iT iC   are assumed to take finite values, but are 

otherwise unconstrained. The subject-level treatment effect is the expected proportion of positive cores under treatment 

( y iT ) minus that under control ( y iC ).  

   In this example, the true quantity that we may wish to know is the proportion of the total gland volume involved by 

cancer, but because this cannot be measured without taking the entire gland out, we resort to an estimate based on the 

random biopsy technique. The difference between the observed proportion of positive cores and the proportion of total 

gland volume involved by cancer may be thought of as a random measurement error. This is allowed by stochastic 

NCM but is not allowed by the framework with deterministic potential outcomes. It is important to emphasize however 

that because stochastic NCM contains deterministic potential outcomes as a special case ( 0 iiT iC     ), any 

estimator with desirable statistical properties in the stochastic framework will have these properties in the deterministic 

framework, while the converse is not always true. Hence, the stochastic framework is safer because it makes weaker 

assumptions about physical reality of randomized experiments.  

   Another important feature of the theory developed in this paper is its focus on internal validity of the trial (i.e., valid 

causal inference for the set of subjects undergoing randomization). Because in real trials subjects are not enrolled by 

any sampling mechanism with known selection probabilities, external validity of a given estimator is not guaranteed by 

randomization alone or by any other statistical considerations. One way to formally examine this problem is to let 

p j denote the (unknown) probability of enrollment in the trial for a given subject in ' .  Although it would be 

convenient to assume that these enrollment probabilities are the same for all subjects in ' , this is usually not a 

realistic assumption.  Hence, we must let p j vary between the subjects. Let   denote the mean of p j  in '  and 

define the relative selection probability /r pj j  . It can be shown [13] that under arbitrary unequal probability 

sampling mechanism followed by completely randomized treatment assignment, the expectation of ̂  is equal to '  

plus the covariance of the subject-level treatment effect with the subject-level relative selection probability in '  
 

ˆ( ) ' ( , )E Cov rj j     

 

In other words, the difference of means estimator is unbiased for '  if and only if the subject-level treatment effects are 

uncorrelated with the subject-level relative selection probabilities. Plausibility of this condition may be assessed based 

on expert opinion; however, this condition is not guaranteed by any statistical considerations unless participants are 

enrolled in the trial from a sampling frame with known selection probabilities. It should also be noted that although 

condition ( , ) 0Cov rj j   (holding at least approximately) is necessary for external validity of the standard interval 

estimator based on (1), it is not sufficient because it does not guarantee that (1) is consistent or conservative for the true 

variance of ̂  in the process of accrual followed by randomization, nor is the CLT for ̂  guaranteed to hold.  

   If we let 1,...,i N  count the order of enrollment of the subjects in the trial, then with respect to accrual process each 

set of subject-level parameters { , , , }y yiT iC iT iC   may be viewed as a random vector. If accrual process is such that 

{ , , , }y yiT iC iT iC  are independent and identically distributed ( iid ) random vectors and ( , ) 0Cov rj j  , then in the 

process of accrual followed by randomization ̂  is unbiased for ' , (1) is consistent, and interval estimator based on (1) 

has nominal asymptotic coverage for '  [3]. The assumption of identical distributions for random vectors 

{ , , , }y yiT iC iT iC  is plausible when the N subjects are drawn from the same large population of eligible subjects 

(defined by the same inclusion criteria), and the joint relative frequency distribution of subject-level parameters in this 

population remains stable during the study. The assumption of independence for { , , , }y yiT iC iT iC   is plausible when 

the sampling units are individual subjects rather than clusters of subjects with similar potential outcomes, and one 

subject’s decision to participate does not influence other subject’s decisions. The assumption of no correlation between 

subject-level treatment effects and subject-level selection probabilities is plausible when the set of the trial participants 

is similar to the population of eligible subjects with respect to the distribution of known or suspected effect modifiers 

(e.g., age, stage of disease, etc.). Although all of the above assumptions can be assessed for plausibility based on expert 

opinion and understanding of accrual process in any given trial, they are not guaranteed to hold by randomization or by 

any other feature of the study design. In contrast, as was shown in the present paper, internal validity can be ensured by 

randomization alone, provided there are no major protocol violations and randomization-induced correlations are 

properly taken into account. In general, it seems reasonable to require that any estimator developed under an assumed 

probability model for enrollment should also have the property of internal validity, as established in the present paper 

for 
1/2ˆ ˆˆ ( )/2z V  . 
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5. Conclusions 

In this paper, properties of the “difference of means” estimator, and its associated variance estimator were examined in 

the completely randomized design with stochastic potential outcomes. Estimation theory was developed under 

randomization distribution without a probability model for enrollment, because in real trials subjects are not enrolled by 

a sampling mechanism with known selection probabilities. It was shown that in this theoretical framework, the 

“difference of means” estimator is asymptotically normal and consistent for the average treatment effect in the study 

cohort, while the standard variance estimator is conservative, producing confidence intervals with at least nominal 

asymptotic coverage. To what extent conventional estimators used with other experimental designs (e.g., block-

randomized or cluster randomized trials) retain their internal validity in stochastic NCM remains to be determined. 
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Appendix 1 

In this Appendix, we derive the expressions for ˆ ˆ( , )Cov T C  and ˆ ˆ( , )Corr T C  in the completely randomized design. First note 

that given a particular treatment assignment ( r ), treatment and control means T̂ and ˆC are independent random variables. Hence, 

ˆ ˆ ˆ ˆ( | ) [ ( ) ( ) | ]E r E E r m mT C T C T C     . Marginally with respect to treatment assignment 
 

ˆ ˆ ˆ ˆ ˆ ˆ( , ) [( )( )] ( )Cov E ET C T T C C T C T C                
 

ˆ ˆ[ ( | )] ( ) ( , )E E r E m m Cov m mT C T C T C T C T C         
 

 

Hence, we find ˆ ˆ( , )Cov T C   if we find ( )E m mT C . For this purpose, it is convenient to introduce indicator variables 1ti   if 

i T  (i.e., if the i th subject is assigned to treatment), 0ti  otherwise, and  ci = 1 if i C , ci = 0 otherwise. With this notation 
1

1
Nm n y tT iT iT i

  
 and

1
1

Nm n y cC iC iC i
  

, where only ti and ci are random variables. Now we can write  
 

1 1( ) [( )( )]
1 1

N NE m m E n y t n y cT C iT i iC iT Ci i
    

 

1 1 [( ... )( ... )]1 1 2 2 1 1 2 2n n E y t y t y t y c y c y cT T NT N C C NC NT C
        

 

1 1 [( ) ( )]
1 1

N Nn n E y y t c y y t ciT iC i i iT jC i jj iT C i i
      
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In the last expression, 
1

N y y t ciT iC i ii 
is the sum of products based on the same subjects, while 

1
N y y t ciT jC i jj ii  

 is the 

sum of products based on different subjects. The expectation of 
1

N y y t ciT iC i ii 
 is clearly zero, because for each subject either 

ti or ci must be zero, hence their product is also zero. To find expectation of 
1

N y y t ciT jC i jj ii  
, we need to find 

( )E t ci j for i j . Note that the product t ci j is a binary variable taking the value of 1 if and only if both ti and c j are equal to 1. 

Hence, ( ) Pr( 1, 1)E t c t ci j i j   , which is just the probability that for any two subjects i and j  in  , subject i will be 

randomized to treatment and subject j will be randomized to control. With this notation, 
1Pr( 1)c n Nj C
  , 

1Pr( 1| 1) ( 1)t c n Ni j T
     and 

1 1( ) Pr( 1, 1) Pr( 1| 1)Pr( 1) ( 1)E t c t c t c c n n N Ni j i j i j j T C
          . It follows 

that  
1 1( ) ( 1)

1 1
N NE y y t c n n N N y yiT jC i j T C iT jCj i j ii i

       
, and hence

 
 

1 1( ) ( 1)
1

NE m m N N y yT C iT jCj ii
     

 

 

In the last expression, 
1

N y yiT jCj ii  
is the sum of products based on different subjects, which can be written as the sum of 

products based on all subjects ( )( )
1 1

N Ny yiT iCi i  
 minus the sum of products based on the same subjects

1
N y yiT iCi 

. 

Hence,  
 

( )( )
1 1 1 1( )

( 1) ( 1)

N N N Ny y y y N N y yiT iC iT iC T C iT iCi i i iE m mT C
N N N N

         
 

 

 

Dividing the numerator and the denominator of the last equality by N , we obtain 
 

1 1( 1)
1 1( )

1 1

N NN N y y N N y yT C iT iC T C T C iT iCi iE m mT C
N N

             
 

 
1 1 1( )( ) ( , )1 1 1

1 1

N N NN y N y N y y Cov y yiT iC iT iC iT iCi i i
T C T C

N N
   

         
 

  

The last equality follows from the fact that the mean product is the product of means plus the covariance, that is 
1 1 1( )( ) ( , )

1 1 1
N N NN y y N y N y Cov y yiT iC iT iC iT iCi i i

       
. Now 

 

( , )
ˆ ˆ( , ) ( , ) ( )

1

Cov y yiT iCCov Cov m m E m mT C T C T C T C
N

   


   
  

 

It is important to note that although for given pT , pC , ( )E iT , ( )E iC , ( )V yiT , ( )V yiC , and ( , )Cov y yiT iC , the 

covariance of T̂  and ˆC  goes to zero with increasing N , ˆ ˆ( , )Corr T C  does not. To see this, substitute (2)-(4) in 

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ) / ( ) ( )Corr Cov V VT C T C T C       
 

( , ) / ( 1)
ˆ ˆ( , )

( ) ( )( ) ( )
[ ][ ]

1 1

Cov y y NiT iCCorr T C
E N n V yE N n V y iC C iCiT T iT

n N n n N nT T C C

 


 
 


 

 

 

 

( , ) / ( 1)

( ) ( )( ) ( )
[ ][ ]

1 1

Cov y y NiT iC

p E V yE V y pC iC iCiT iT T
p N p N p N p NT T C C



 
 

 
 

 

 

( , ) / ( 1)

( ) ( )1 ( ) ( ) 1
[( ) ][( ) ]

1 1 1 1

Cov y y NiT iC

p E V yN E V y N pC iC iCiT iT T
N p N p N N p N p NT T C C



 
 

 
 

   

 

 

( , )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 12( ) ( ) ( )
1

Cov y yiT iC

E E E V y V y E V y V yN N NiT iC iT iC iT iC iT iC

N p p N p N pT C C T

   




  
  

  

Because ( 1) / 1N N  , as N  ,  ˆ ˆ( , )Corr T C  does not go to zero with increasing N , and T̂  and ˆC  cannot be viewed 

as being approximately independent or even uncorrelated in any asymptotic arguments. Note that with deterministic potential 

outcomes ˆ mT T  , ˆ mC C  and ˆ ˆ( , ) ( , ) ( , )Corr Corr m m Corr y yT C T C iT iC     . 
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Appendix 2 

In this Appendix we derive expressions (6) and (7), which in sum give ˆˆ[ ( )]E V  for the completely randomized design. Explicit 

proof of (6) is given below, while the proof of (7) is its mirror image (just replace T by C). Equation (8) is the sum of (6) and (7). It is 

also shown that ˆ ˆˆ ˆ( ) / [ ( )] 1
P

V E Va   , where
1 1 1 1ˆˆ[ ( )] [ ( ) ( ) ( ) ( )]E V n E n V y n E n V ya iT iT iC iCT T C C

         is the 

asymptotic form of (8), and “P” denotes convergence in probability. 

   Recall that any variance expression can be written as the mean square minus the squared mean. This result will be used repeatedly 

in this Appendix. Now to prove equation (6), we first find 
1 1 2 1 22ˆ[ ( ) ] [( ) ( ) ]E n Y E n Y n Yi T ii T i T i TT T Ti

         , where 
1 2( )E n Yi TT i

  will be evaluated using the law of the iterated mean, and 

1 2[( ) ]E n Y ii TT

  will be evaluated using (2) 

 

1 2 1 2 1 2 1 1 2( | ) ( ) | ( )E n Y r n E Y r n y n n yiT iTi T i T i T i T i TT T T T Ti i iT iT
                   

 

1 2 1 1 2 1 1 2( ) ( ) ( )
1 1

N NE n Y E n E n y N N yiT iTi T i T i TT T Ti iT i i iT
                

                                                   (i) 

 

1 2 1 1 2 2ˆ[( ) ] ( ) [ ( )] ( )E n Y V n Y E n Y Vi i i Ti T i T i TT T T T
             

 

( ) ( ) 1 2 ( )
11

E N n V yiT T iT NN y V y iTi iTn N nT T

      
                                                                                                     (ii) 

 

Now 
 

1 1 2 1 22ˆ[ ( ) ] ( ) [( ) ]E n Y E n Y E n Yi T ii T i T i TT T Ti
           

 

 

( ) ( )1 2 1 2( ) ( )
1 11

E N n V yiT T iTN NE N y N y V yiT iTi iT i iTn N nT T




         
 

 

 

( ) ( ) ( ) ( 1) ( )

1 ( 1)

n E E N n V y N n V yT iT iT T iT T iT

n N n N nT T T

   
   

 
 

 

 

( )( 1) ( ) ( ) ( ) ( )

( 1)

E n Nn V y n V y NV y n V yiT T T iT T iT iT T iT

n N nT T

    
  


 

 

 

( )( 1) ( )( 1)

1

E n N V y niT T iT T

n N nT T

  
 


 

 

Hence, 
 

1 2ˆ( 1) ( ) ( ) ( )
[ ]

1

n Y E N V yT i Ti T iT iTE
n n N nT T T

 
    


 

 

Expression (7) is proved by a similar argument; while (8) is the sum of (6) and (7). Now we will show that ˆ ˆˆ ˆ( ) / [ ( )] 1
P

V E Va    

as N  . To state this result more precisely, we need to define the limiting process by writing down some regularity conditions, 

that is, by specifying what attributes of  are to be held fixed as N  . For this purpose, we need to introduce some additional 

notation. Let { ' , ' }y iT iT  and { ' , ' }y iC iC denote means and variances of the squared subject-level outcomes (
2Y

i
) under 

treatment and under control intervention respectively. Note that { ' , ' }y iT iT and { ' , ' }y iC iC are parameters of the subject-level 

distributions, just like subject parameters { , }y iT iT  and { , }y iC iC . Define 
1 1 2( ' ) ( ' ' )

1 1
N NV y N y N yiT iT iTi i

    
, 

1( ' ) '
1

NE NiT iTi
   

,
1 1 2( ' ) ( ' ' )

1 1
N NV y N y N yiC iC iCi i

    
,

1( ' ) '
1

NE NiC iCi
   

. Also, let iT  and 

iC denote the fourth central moments of the subject-level distributions of the i th’s subject under treatment and under control, 

respectively. That is, if the i th subject is treated, then 
4[| | ]E Y yi iT iT   , while under control 

4[| | ]E Y yi iC iC  . Let 
max min{ , }
iT iT
   and 

max min{ , }
iC iC
   be the maximum and the minimum values of iT  and iC  in  , respectively, and use similar 

notation for y iT , y iC , iT , iC  .  Now we are ready to state the regularity conditions for the limiting process 

  

Regularity conditions: As N  , let pT , pC , T , C , ( )V yiT , ( )V yiC , ( , )Cov y yiT iC , ( )E iT , ( )E iC , ( ' )V y iT , 

( ' )V y iC , ( ' )E iT , ( ' )E iC , 
max min{ , }y y
iT iT

, 
max min{ , }y y
iC iC

, 
max min{ , }
iT iT
  , 

max min{ , }
iC iC
  , 

max min{ , }
iT iT

  , 
max min{ , }
iC iC

   remain constant, while other attributes of   may or may not change.  

 

Given these regularity conditions, note that since ( 1)n nT T  , ( 1)n nC C  , as N  , and because n p NT T , 

n p NC C , we have from (1) and (8) as N   
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1 1 1 12 2ˆ ˆ ˆˆ ( ) ( )( )

ˆˆ 1 1[ ( )] [ ( ) ( )] [ ( ) ( )]

p n Y p n YV i T i Ci T i CT T C C

E V p E V y p E V ya iT iT iC iCT C

 

  

       


   
                                                                                   (iii) 

 

Recall that in general, for two sequences of random variables 1x  and 2x , and two constants 1k  and 2k , if 1 1
P

x k  and 

2 2
P

x k , then 1 2 1 2
P

x k k k , 2 2
1 1

P
x k , ( ) ( )1 2 1 2

P
x x k k   , and ( ) / ( ) 11 2 1 2

P
x x k k   [7]. Hence, to 

prove that (iii) goes in probability to unity, we just need to show that (a) 1 2ˆ( ) ( ) ( )
P

n Y E V yi T iT iTi TT
      , and (b) 

1 2ˆ( ) ( ) ( )
P

n Y E V yi C iC iCi CC
      . Explicit proof of (a) is given below, while the proof of (b) is its mirror image (just 

replace T by C). 

   To prove (a), we may again write 
1 2ˆ( )n Y i Ti TT

    as 
1 2 1 2( ) ( )n Y n Y ii T i TT Ti
    and show that the first term 

1 2( )n Yi TT i

  is consistent for its expectation (i), while the second term 

1 2( )n Y ii TT

  is consistent for 

2
T
 . For the second 

term, the proof is trivial, since 
1 2( )n Y ii TT

  is just 2ˆ

T
  , which is a continuous function of T̂ . Consistency of T̂ for T  

follows from the fact that ˆ( )E T T  , and ˆ( ) 0,V T   as N   which follows from (2). Hence, 2 2ˆ
P

T T
  . Now, to 

prove consistency of 
1 2( )n Yi TT i

  for (i), we need to show that 

1 2( ) 0V n Yi TT i
   , as N  . This variance can be found 

by the law of variance decomposition. First, we may note that 
1 2 1( | ) 'E n Y r n y iTi T i TT Ti
    and similarly 

1 2 2( | ) 'V n Y r n iTi T i TT Ti
    . Now 

 

( ' ) ( ' )1 2 1 2 1 2( ) [ ( | )] [ ( | )]
1

E N n V yiT T iTV n Y E V n Y r V E n Y ri T i T i TT T Ti i i n N nT T

           


 

( ' ) ( ' )

1 ( 1)

E V yiT iT

p NT p p NTC


 

 
                                                                                                                                                           (iv) 

 

Here, we made use of the fact that marginally with respect to treatment assignment 1 '
 n iTi TT

  is the sample mean of 'iT in a 

simple random sample ( )T from the study population; hence its expectation is the population mean 1 ' ( ' )
1

  
NN EiT iTi

  . 

Similarly, 1 '
 n y iTi TT

 is the sample mean of 'y iT inT ; hence, its variance is the population variance of 'y iT  over the 

sample size ( )nT , multiplied by the finite population correction ( ) / ( 1) N n NT . By definition of the limiting process, the 

numerators in (iv) do not depend on N , while the denominators increase as .N Hence, 1 2( ) 0  V n Yi TT i
, as N , 

and 
1 2 1 2( ) ( )

1
    

P Nn Y E N yiTi TT i i iT
 . It follows that 

 
1 1 2 22ˆ( ) ( ) ( ) ( )

1
        

P Nn Y E N y E V yi T iT iT iTi TT Ti iT
     

 

By a similar argument, it can be shown that
1 2ˆ( ) ( ) ( )    

P
n Y E V yi C iC iCi CC

  , and hence ˆ ˆˆ ˆ( ) / [ ( )] 1
P

V E Va  . 

This result, together with the fact that ˆ ˆˆ( ) / [ ( )]V E Va   goes in probability to (10), implies that ˆ ˆˆ( ) / ( )V V  also goes to (10) in 

probability. 

                                                                                                                                      

Appendix 3 

In this Appendix, we show that in the completely randomized design, under the regularity conditions stated in Appendix 2, 
1/2ˆ ˆˆ[( ) / ( ) ]V   goes in distribution to a normal random variable with mean zero and variance given by (10). We will use notation 

( , )Ν a b to denote a normal random variable with mean a  and variance b . Also, let d m mT C  . Our first step is to prove the 

Central Limit Theorem (CLT) for d  that is, to show that  
 

1/2[( ) / ( ) ] (0,1)
D

d V d Na    

 

Here “D” denotes convergence in distribution, and ( )V da is the asymptotic variance of d that can be obtained from (5) by setting 

0, iiT iC    , noting that 1N N  as N  , and also noting that nT and nC  can be written as p NT  and p NC  

 

( )V da = pC ( )V yiT / p NT  + pT ( )V yiC / p NC + 2 ( , )Cov y yiT iC / N  

 

Now, to prove the CLT for d , first note that mT  is a sample mean of y iT in a simple random sample (T ) from a finite population 

(  ); hence asymptotic normality of mT  follows from the finite-population CLT, well-known in the survey sampling literature [14]. 

Of course, same applies to mC . However, asymptotic normality of d  does not immediately follow because mT  and mC are 

correlated. In fact, as shown in Appendix 1 ( , ) ( , )Corr m m Corr y yT C iT iC  . Nevertheless, if we could define for each subject in 

  a number Ui  such that d  could be written as a sample mean of Ui  in T , that is 
1d n Ui TT i
   , then asymptotic normality 



68 International Journal of Advanced Statistics and Probability 

 

 
of d  would immediately follow from the finite-population CLT applied to Ui . To find a general expression for Ui , note that the 

total of y iC in C  can be written as the total of y iC in  , which is N C minus the total of y iC in T , which is y iCi T  . 

Hence, mC can be written as
1 1 1 1( ) ( )m N y n n N n n n yC C iC C T iCi T i TTC C C

          , and of course by definition, 
1m n yT iTi TT
   . Hence, 

1 1 1[ ( )].d m m n y N n n n yT C iT C T iCi TT C C
        It follows that a general expression 

forUi  exists and is given by 
 

1 1 1 1( ) ( )U y N n n n y y p p p yi iT C T iC iT C T iCC C C C
           

 

This completes the proof of the CLT for d , with the required regularity conditions for Ui  satisfied by those given in Appendix 2 

(see Cochran 1977, p39-40) [14]. Thus we have established that under our regularity conditions, 1/2[( ) / ( ) ] (0,1)
D

d V d Na  . 

This also proves the CLT for ̂  under the assumption of deterministic potential outcomes because this assumption implies ˆd  . 

   If potential outcomes are stochastic and 
min
iT

 , min
iC

 are positive (which entails practically no loss of generality since both can be 

arbitrarily close to zero), then given any particular treatment assignment ( r ), T̂  is a mean of independent, but not necessarily 

identically distributed random variables, and likewise for ˆC . Given a particular treatment assignment r , T̂  and ˆC have 

expectations mT and mC  and variances 
2n iTT i T


 

and 
2n iCC i C


 

, respectively, and for large N , for all  r  

approximately 
2 1/2ˆ[( ) / ( ) | ] ~ (0,1)m n r NT T iTT i T

   
 and 

2 1/2ˆ[( ) / ( ) | ] ~ (0,1)m n r NC C iCC i C
   

. Here, 

normality follows from Lyapunov CLT [15] and our regularity conditions stated in Appendix 2. Because T̂  and ˆC are 

independent given r , we also have for large N  for all r  approximately  
 

2 2 1/2ˆ[( ) / ( ) | ] ~ (0,1)d n n r NiT iCT Ci T i C
        

 

Adding to both sides of the last expression
2 2 1/2( ) / ( )d n niT iCT Ci T i C

      
, which is a constant given r , we obtain 

 

ˆ( ) ( )
[ | ] ~ [ ,1]

2 2 1/2 2 2 1/2( ) ( )

d
r N

n n n niT iC iT iCT TC Ci T i C i T i C

  

   

 

          

 

 

Next we note that the marginal with respect to treatment assignment distribution of
2 2 1/2ˆ[( ) / ( ) ]n niT iCT Ci T i C

       
 

is a mixture of !/ ! !M N n nT C
 
conditional distributions, where M  is the total number of possible treatment assignments, 

1M  is the mixing probability, and each distribution in the mixture is normal with unit variance and mean 
2 2 1/2( ) / ( )d n niT iCT Ci T i C

      
. Now we need to show that marginally with respect to treatment assignment, the 

distribution of these means is asymptotically normal. As we already showed, marginally with respect to treatment 

assignment
1/2[( ) / ( ) ] (0,1)

D
d V d Na  . Also 

 

1 1 2 2[ ( ) ( )] / [ ] 1
P

n E n E n niT iC iT iCT TC Ci T i C
          

  

 

It follows from the last result and from Slutsky’s Theorem [7] that the marginal asymptotic distribution of 
2 2 1/2( ) / ( )d n niT iCT Ci T i C

      
is the same as that of 

1 1 1/2( ) / [ ( ) ( )]d n E n EiT iCT C
     . Since nT and nC  

can be written as p NT  and p NC , respectively, we note that 
1/2 1 1 1/2( ) / [ ( ) ( )]V d n E n EiT iCT C

   does not depend on N , 

and write 
 

1/2( )( ) ( )

1 1 1/2 1 1 1/2 1/2[ ( ) ( )] [ ( ) ( )] ( )

V dd d Da

n E n E n E n E V diT iC iT iC aT TC C

 

   

 
 

    
 

 

1/2( ) ( )
(0,1) [0, ]

1 1 1/2 1 1[ ( ) ( )] ( ) ( )

V d V da aN N
n E n E n E n EiT iC iT iCT TC C

   


    
 

 

( )( )
[0, ]

2 2 1/2 1 1( ) ( ) ( )

V dd D aN
n n n E n EiT iC iT iCT TC Ci T i C



   




      

 

 

From this result and from the fact that compounding Gaussian distributions with same variances and with means distributed 

according to a Gaussian distribution results in another Gaussian distribution [16] it follows that marginally with respect to treatment 

assignment 
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ˆ ( )( )
[0,1 ]

2 2 1/2 1 1( ) ( ) ( )

V dD aN
n n n E n EiT iC iT iCT TC Ci T i C

 

   


 

      

 

 

The variance of this limiting distribution is simply the expectation of conditional variance, which is unity (since each conditional 

variance in the mixture is equal to unity), plus the variance of conditional expectations. Also, since marginally with respect to 

treatment assignment 2 2 1 1[ ] / [ ( ) ( )] 1
P

n n n E n EiT iC iT iCT TC Ci T i C
          

, we have marginally  

 

ˆ ( )( )
[0,1 ]

1 1 1/2 1 1[ ( ) ( )] ( ) ( )

V dD aN
n E n E n E n EiT iC iT iCT TC C

 

   


 

    
 

 

Furthermore, from Appendix 2, marginally with respect to treatment assignment 
 

1 1 1 1ˆˆ( ) / [ ( ) ( ) ( ) ( )] 1
P

V n E n V y n E n V yiT iT iC iCT T C C
        

  

Here, 
1 1 1 1 ˆˆ[ ( ) ( ) ( ) ( )] [ ( )]n E n V y n E n V y E ViT iT iC iC aT T C C

          is the asymptotic form of (8). By Slutsky’s Theorem, 

the marginal asymptotic distribution of 1/2ˆ ˆˆ( ) / ( )V   is the same as that of 
1/2ˆ ˆˆ( ) / { [ ( )]}E Va   . Noting that 

1 1 1/2[ ( ) ( )] /n E n EiT iCT C
   1/2ˆˆ{ [ ( )]}E Va   does not depend on N , we can write that marginally with respect to treatment 

assignment 
 

1 1 1/2ˆ ˆ[ ( ) ( )]( ) ( )

1/2 1/2 1 1 1/2ˆ ˆˆ ˆ{ [ ( )]} { [ ( )]} [ ( ) ( )]

n E n EiT iC DT C

E V E V n E n Ea a iT iCT C

    

   

  
  

 
 

1 1 1/2[ ( ) ( )] ( )
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Here, 1 1 ˆˆ[ ( ) ( ) ( )] / [ ( )]n E n E V d E ViT iC a aT C
      is given by (10) and hence cannot exceed unity. 


