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Abstract 
 

This paper fits a gamma probability model to the heights of Students of the Akwa Ibom State University. A sample of 998 Students was 

drawn from the Medical Centre of the Institution’s Main Campus, Ikot Akpaden, Akwa Ibom State. Some exploratory data analyses were 

carried out to observe the behavior of the data set graphically. A chi-square test is used to ascertain whether or not the heights of students 

are gamma distributed. From the graphical displays and the chi-squared test results, it is observed that the heights follow gamma distribu-

tion even though the maximum likelihood estimates of the parameters are quite influential on the results at 𝛼 ≥ 0.01% significance level. 
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1. Introduction 

Fitting a probability model to a given dataset is necessary to show how well that probability model can give adequate information about 

the dataset. Different datasets exist as well as different probability models. 

 

The goodness of fit of a probability model describes how well it fits a set of observations or datasets. Measures of goodness of fit typical-

ly summarize the discrepancy between observed and expected values under the model considered. Such measures can be used in statisti-

cal hypothesis testing to test for; normality of residuals, whether two samples are drawn from identical distributions or whether outcome 

frequencies follow a specified distribution and others. 

 

Several goodness of fit tests has been invented by various authors. According to Michael, Ikpang and Isaac (2017), Anderson and Dar-

ling (1952) introduced the Anderson-Darling test, a statistical test of whether a given sample data is drawn from a given probability dis-

tribution with no parameter to be estimated.  

Shapiro and Wilk (1965) introduced the Shapiro-Wilk test to test the null hypothesis that the random samples constituting a random vari-

able comes from a normally distributed population. D’Agostino (1970) introduced the D’Agostino’s K2 test, a goodness of fit measure of 

departure from normality; the test aims to establish whether or not the given sample comes from a normally distributed population. 

 

Till date, many probability models have been developed and used in fitting various datasets. Datasets do not just follow a given probabil-

ity model, therefore, observance to laid down conditions and techniques is necessary to ascertain whether or not a given data set follows 

a defined probability model. Many authors have contributed and defined various techniques to verify the normality and other distribu-

tions tests. 

 

These techniques include but are not limited to the following; The graphical methods, frequentist tests and the Bayesian tests. The graph-

ical methods involve the use of graphical tools to display box plots, histogram, Q-Q plots of the given data sets and comparing same with 

that of the theoretical distributions.  

 

Pearson (1900) investigated the properties of Pearson’s chi-squared test. Pearson chi-squared test tests a null hypothesis that the frequen-

cy distribution of certain events observed in a sample is consistent with a particular theoretical distribution. Lilliefors (1967) introduced 

the Lilliefors test, a normality test based on the Kolmogorov-Smirnov test. It is used to test the null hypothesis that data come from a 

normally distributed population, when the null hypothesis does not specify which normal distribution. 
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Recently, Michael, Ikpang and Isaac (2017) fitted a normal distribution to the weights of students of the Akwa Ibom State University 

using the Chi-squared approach by splitting the students’ weights into different cells to obtain the observed values and using the raw data 

for the maximum likelihood estimation of model parameters mean and standard deviation, thereafter, calculating the cells probability and 

the chi-squared value. 

 

This work fits the Gamma distribution to the heights of Akwa Ibom State University Students using the Chi-Squared test. The Heights of 

998 students of the Akwa Ibom State University was collected from the Medical Centre, Main Campus, Ikot Akpaden. 

2. Methodology 

Many authors have contributed and defined various techniques to verify or test many distributions. These techniques include but not 

limited to the following; the graphical methods, frequentist test and the Bayesian tests. 

 

This work employs two methods for testing or verifying if gamma distribution fits the heights of Akwa Ibom State University Students; 

the graphical method and the chi-squared methods. More attention will be given to the latter since it is the main method demanded for 

this work. 

2.1. The graphical method 

The graphical methods involve the use of graphical tools to display box plots, histogram and density plot of the given data sets and com-

paring same with that of the theoretical distribution. In this research work, we display the density plot for the raw and the simulated da-

tasets. 

2.2. The chi-squared method 

According to Wackerly, Mendenhall and Scheaffer (2008), Karl Person in 1900 proposed the following test statistics, which is a function 

of the deviations of the observed counts from their expected values, weighted by the reciprocals of their expected values. Thus, 

 

χk−1
2 =  ∑

(Xi−E(ni))2

E(ni)
n
i=1 =  ∑

(Xi− npi)
2

npi

n
i=1                                                                                                                                                       (1) 

 

Is called the Pearson chi-squared test and denoted χk−1
2  with k-1 degree of freedom.  

Where: 

Xi = an observed frequency (i.e. count) for ni 

E (ni) = an expected (theoretical) frequency for ni, asserted by the null hypothesis. 

n= the sample size. 

 

Hogg, McKean and Craig (2013), noted that the random variable X represented by the space {x: −∞ < x < ∞} can be partitioned into k 

mutually disjoint sets M1, M2, … Mk, so that the events M1, M2, … Mk are mutually exclusive and exhaustive.  

Let H0 be the hypothesis that X ~GAMMA(α, β) with β and α unspecified, then each is a function of the unknown parameters β and α as 

seen in the following equation (2). 
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Suppose that we take a random sample Y1, Y2, … , Yk of size n from this distribution and if we set Xi to denote the frequency of Mi,i =

1,2,3, … , k, so that X1 + X2 + ⋯ + Xk = n, then the random χk−1
2 variables cannot be computed once X1, X2, … , Xk have been observed, 

since each pi, and hence χk−1
2 , is a function of α and β. 

 

The values of α and β that minimize χk−1
2  are difficult to compute therefore, their maximum likelihood estimates are used to evaluate pi 

and χk−1
2  .Using maximum likelihood estimates of the parameters in place of minimum chi-square estimates tend to lead to the rejection 

of the null hypothesis since the χk−1
2 value is not minimized by maximum likelihood estimates and as such, the computed value is some-

what greater that it would be if minimum chi-square estimates are used. We avoid this by varying our level of significance denoted by α.  

To ascertain the validity of our estimates, the method of moment estimates of the parameters given by β̂ =

∑ X2n
i=1

n
−X̅2

X̅
 and α̂ =

X̅2

∑ X2n
i=1

n
−X̅2

 

can be used. 

3. Results and discussion 

Various graphical displays are shown to demonstrate the behavior of the dataset as seen in Fig. 1 and Fig. 2 while a chi-square test is 

carried out to ascertain through a statistical test if the dataset follows a gamma distribution or not. 
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3.1. Graphical displays 

 
Fig. 1: Gamma Density Plot of the Heights of Students. 

 

 
Fig. 2: Gamma Density Plot of the Heights of Students for the Simulated Data. 

3.2. Chi-square test results 

The chi-square test is employed to ascertain whether or not the data follow the distribution of interest. 

 

3.3. Research hypothesis 

The Null hypothesis (H0): The height of students follows a gamma distribution. 

The Alternative Hypothesis (H1): The height of students does not follow a gamma distribution. 

3.4. Estimation of parameters for the gamma distribution using maxlik in R 

According to Wackerly, Mendenhall and Scheaffer (2008), a random variable 𝑿 is said to have gamma distribution with parameters α > 0 

and β > 0 if and only if the density function of X is  
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Where; 𝛤(𝛼) = ∫ 𝑥𝛼−1𝑒−𝑥𝑑𝑥
∞

0
; α and β are the parameters of the distribution. 

The log maximum likelihood function, (ℓ) of the gamma distribution is defined as; 

 

ℓ = −𝑛 𝑙𝑜𝑔 𝛤(𝛼) − 𝛼𝑛 𝑙𝑜𝑔 𝛽 + (𝛼 − 1) ∑ 𝑙𝑜𝑔 𝑥𝑖
𝑛
𝑖=1 −

∑ 𝑥𝑖
𝑛
𝑖=1

𝛽
                                                                                                                     (4) 

 

and the maximum likelihood estimate of the parameters 𝛼 and 𝛽 are obtained using maxLik (Henningsen and Toomet, 2009) package in 

R program.  
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3.5. R Codes for obtaining the maximum likelihood estimate of the parameters 

X = The Height of students 

Library (maxLik) 

gamma1<-function (statistics) { 

alpha<-statistics [1] 

beta<-statistics [2] 

sum(dgamma(X, alpha,scale=beta, log=TRUE)) 

} 

mle<-maxLik(logLik=gamma1, start=c(alpha=0.75, beta=2.21366)) 

Result <-summary(mle) 

Result##alpha = α = 300.22048, beta = β = 0.00553 

3.6. Computation of the respective probabilities 

The random variable X, denoting the heights of students is partitioned into the following k mutually disjoint sets: 

 

𝑀1 = {𝑥: 0 < 𝑥 < 1.50} , 𝑀2 = {𝑥: 1.5 ≤ 𝑥 < 1.52}, 𝑀3 = {𝑥: 1.52 ≤ 𝑥 < 1.54}, 

 

𝑀4 = {𝑥: 1.54 ≤ 𝑥 < 1.56}, 𝑀5 = {𝑥: 1.56 ≤ 𝑥 < 1.58}, 𝑀6 = {𝑥: 1.58 ≤ 𝑥 < 1.60}, 𝑀7 = {𝑥: 1.60 ≤ 𝑥 < 1.65} , 𝑀8 =
{𝑥: 1.65 ≤ 𝑥 < 1.70}, 𝑀9 = {𝑥: 1.70 ≤ 𝑥 < 1.75} , 𝑀10 = {𝑥: 1.75 ≤ 𝑥 < 1.80} , 𝑀11 = {𝑥: 1.80 ≤ 𝑥 < 1.85} , 𝑀12 = {𝑥: 1.85 ≤ 𝑥 <
∞} 

 

Let 𝑝(𝑀𝑖) = 𝑝𝑖 , 𝑖 = 1,2, … , 𝑘, where 𝑝𝑖 is the probability that the outcome of the random experiment is an element of the set 𝑀𝑖 from the 

gamma probability distribution. The probabilities are obtained as follows:  

 

pi = ∫
xα−1e

−
x
β

βαΓ(α)

b

a
dx , i = 1,2, … ,12                                                                                                                                                                  (5) 

 

Where a and b are the lower and upper limits for each Mi; i = 1,2, … ,12.  

 

The table 1 shows the calculated probabilities (pi) obtained from (4) for each set Mi with cells = 1,2, … ,12 , observed and expected fre-

quencies, Xi and npi, respectively. 

 
Table 1: Cells, Calculated Probabilities, Observed and Expected Frequencies 

Cells (i) sets(Mi) Observed frequencies (Xi) Probabilities (pi) Expected frequencies npi 

1 (0,1.5) 25 0.0437 43.5673 

2 [1.5,1.52) 27 0.0248 24.7537 
3 [1.52,1.54) 33 0.0341 34.0620 

4 [1.54,1.56) 46 0.0447 44.5452 

5 [1.56,1.58) 69 0.0555 55.4364 
6 [1.58,1.6) 63 0.0659 65.7342 

7 [1.6,1.65) 201 0.1965 196.0590 

8 [1.65,1.7) 243 0.2017 201.3117 
9 [1.7,1.75) 145 0.1595 159.2111 

10 [1.75,1.8) 87 0.0986 98.3785 

11 [1.8,1.85) 40 0.0482 48.1233 

12 [1.85,∞) 19 0.0269 26.8177 

 

The Test Statistic 

 

χk−3
2 =  ∑

(Xi−npi)2

npi

n
i=1                                                                                                                                                                                     (6) 

 

The test statistic in (5) where Xi and npi denote the observed and expected frequencies respectively with k – 3, the degree of freedom is 

used to obtain values in Table 2 

 
Table 2: Computation of the Chi-Squared Value 

Cells (i) Observed frequencies (Xi) Expected frequencies. npi (Xi − npi)2  
(Xi−npi)2

npi
  

1 25 43.5673 344.7446 7.912922 

2 27 24.7537 5.045864 0.203843 

3 33 34.0620 1.127844 0.033112 

4 46 44.5452 2.116443 0.047512 

5 69 55.4364 183.9712 3.3186 

6 63 65.7342 7.47585 0.113728 
7 201 196.0590 24.41348 0.124521 

8 243 201.3117 1737.914 8.632953 

9 145 159.2111 201.9554 1.268475 
10 87 98.3785 129.4703 1.316042 

11 40 48.1233 65.988 1.371228 

12 19 26.8177 61.11643 2.278959 
Total    26.62189 
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So that; 

 

χk−3
2 =  ∑

(Xi−npi)2

npi

n
i=1  = 26.62189 

3.7. Significance levels and critical values 

The degree of freedom (df) = n – k – 1 = 9, where n represents the number of cells and k, the number of parameters estimated. Table 3 

presents some significance levels with their corresponding critical values. 

 
Table 3: Significance Levels with Their Corresponding Critical Values for Df=9 

Significance levels Critical values Degree of freedom 

0.0001 33.71995 9 

0.0011 27.62883 9 

0.0021 25.92691 9 
0.0031 24.88592 9 

0.0041 24.1303 9 

0.0051 23.53515 9 
0.0061 23.04321 9 

0.0071 22.62334 9 

0.0081 22.25672 9 
0.0091 21.93108 9 

3.8. The decision rule 

Reject H0 if |χk−3
2 | > χCrit.

2 , where χk−3
2  is the computed value of the test statistic and xCrit.

2  is the critical value obtained from the table 

above. 

4. Conclusion 

It is observed from the results above that χk−3
2  = 26.62189 < 27.62883 = χCrit.

2  when the significance level α ≥ 0.01%. Hence, the height 

of students of Akwa Ibom State University follow a gamma distribution at α ≥ 0.01%. Using the Chi-square test. This may be due to the 

fact that the maximum likelihood estimates of the parameters instead of the minimum chi-square estimates were used. 
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