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Abstract 
 

It is well-known that in the presence of multicollinearity, the Liu estimator is an alternative to the ordinary least square (OLS) estimator 

and the ridge estimator. Generalized Liu estimator (GLE) is a generalization of the Liu estimator. However, the efficiency of GLE de-

pends on appropriately choosing the shrinkage parameter matrix which is involved in the GLE. In this paper, a particle swarm optimiza-

tion method, which is a metaheuristic continuous algorithm, is proposed to estimate the shrinkage parameter matrix. The simulation 

study and real application results show the superior performance of the proposed method in terms of prediction error. 
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1. Introduction 

Regression modeling is a widely applied strategy for studying several real data problems. In linear regression model, the response varia-

ble is considered as a continuous and reasonably assumed to follow normal distribution. In linear regression models, it is assumed that 

the correlations among the explanatory variables are not high (Alheety & Kibria, 2014; Alkhamisi & Shukur, 2007; Dorugade, 2014). 

However, this assumption is not always hold in practice. In linear regression model, the ordinary least squares (OLS) estimator is the best 

estimator among all linear and unbiased estimators. However, under multicollinearity, OLS estimator becomes unhelpful due to their 

large variance. 

The ridge estimator (RE) (Hoerl & Kennard, 1970) has been consistently demonstrated to be an attractive and alternative to the OLS, 

when the multicollinearity exists. RE can shrink all the regression coefficients toward zero to reduce the large variance (Asar & Genç, 

2015). 

Liu (1993) suggested a Liu estimator (LE) for the linear regression model and found out that the drawback in the ridge estimator is that it 

provides a complicated non-linear function of the biasing parameter k which has the range 0 to ∞. So, the LE is considered as an alter-

native to the OLS estimator to overcome the problem of multicollinearity. The advantage of the LE is that it is a linear function of the Liu 

parameter, d , which has a range of 0–1. 

Therefore, many researchers have used the LE instead of the RE due to the linear function of the d (Qasim et al., 2018). 

Generalized Liu estimator (GLE) has also been considered as a generalization of the LE. The performance of the GLE is fully depending 

on the values of the shrinkage parameter matrix. Accordingly, appropriate choosing of the shrinkage parameter matrix is an important 

part of applying GLE.  

In recent years, numerous natural-inspired algorithms have been successfully introduced and applied as random search strategies for 

solving a number of optimization problems. Particle swarm optimization algorithm is a comparatively recent population-based algorithm 

that is inspired by swarm.  

In this paper, the Particle swarm optimization algorithm is proposed to estimate the values of the shrinkage parameter matrix in GLE. 

Our proposed approach will efficiently help to find the best values with high prediction accuracy. The superiority of our proposed ap-

proach in different simulated examples and a real data application is proved. 

2. Generalized Liu estimator 

Suppose that we have a data set 
1{( , )}n

i i iy =x  where iy   is a response variable and 
1 2( , ,..., ) p

i i i ipx x x= x  represents a p-

dimensional explanatory variable vector. Without loss of generality, it is assumed that the response variable is centered and the explana-

tory variables are standardized.  

Consider the following linear regression model, 
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,y X  = +                                                                                                                                                                                                   (1) 

 

Where y  is an 1n   vector of observations of the response variable, 
1( ,..., )pX x x=  is an n p  known design matrix of explanatory 

variables, 
1( ,..., )p  =  is a 1p   vector of unknown regression coefficients, and ε  is an 1n   vector of random errors with mean 0 and 

variance 2 . Using OLS method, the parameter estimation of Eq. (1) is given by 

 
-1ˆ ( ) .T T

OLS X X X y =                                                                                                                                                                                      (2) 

 

OLS estimator is unbiased and it has minimum variance among all linear unbiased estimators. However, in the presence of multicolline-

arity, the TX X  matrix is nearly singular that makes OLS estimator unstable due to their large variance. To reduce the effects of the mul-

ticollinearity, RE (Hoerl & Kennard, 1970), which is the most commonly used method, adds a positive shrinkage parameter, k , to the 

main diagonal of the TX X  matrix. The RE is defined as  

 
-1ˆ ( ) ,T T

RE X X kI X y = +                                                                                                                                                                                   (3) 

 

Where I  is the identity matrix with dimension p p . The estimator ˆ
RE is biased but more stable and has less mean square error. The 

shrinkage parameter, k , controls the shrinkage of   toward zero. The OLS estimator can be considered as a special estimator from the 

RE with 0k = . For larger value of k , the RE yields greater shrinkage approaching zero (Yang & Emura, 2017).  

The LE which is proposed by Liu (1993) for linear regression model is an alternative estimator to overcome multicollinearity. It is de-

fined as 

 
-1ˆ ˆ( ) ( ) ,T T

LE OLSX X I X X dI = + +                                                                                                                                                                (4) 

 

Where 0 1d   is a constant parameter known as Liu-biasing parameter. Rewriting Eq. (1) as (Alheety & Kibria, 2014) 

 

y Z = +                                                                                                                                                                                                       (5) 

 

Where Z XW= ,where W is a matrix p p  So that Z Z W X XW  = will implies 
1 1( , ,....., )pZ Z diag    =  = where   is a diagonal ma-

trix with the Eigen values of X X and W = , then OLS estimator of   is given by (Alheety & Kibria, 2009): 

 
1ˆ

OLS Z y − =                                                                                                                                                                                                   (6) 

 

And 

 
1ˆ ˆ( ) ( )LE OLSI dI −=  +  +                                                                                                                                                                               (7) 

 

The mean square error (MSE) is 

 
2 2

2 2

2 2
1 1

( )ˆ ˆ( ) ( 1)
( 1) ( 1)

p p

i i
LE

i ii i i

d
MSE d

 
 

  = =

+
= + −

+ +
 

                                                                                                                                              (8) 

 

The difference between LE and GLE is there are ith values of d , such that (Hoerl & Kennard, 1970) 

 
-1ˆ ˆ( ) ( ) ,T T

GLE OLSX X I X X D = + +                                                                                                                                                                 (9) 

 

Where 
1 2(d ,d ,....,d )pD diag= . Since the Liu parameter is the key to reduce the multicollinearity, there are multi ways to determine this 

value, the researcher suggest several ways to choose the optimal d  such as (Hocking et al., 1976), (Nomura, 1988), (Troskie & Chalton, 

1996), (Firinguetti, 1999), (Alkhamisi & Shukur, 2007), (Batah et al., 2008), (Al-Hassan, 2010), (Dorugade & Kashid, 2010), (Månsson 

et al., 2010), (Dorugade, 2014), (Asar et al., 2014)and (Bhat & Raju, 2017). In this paper, we adapted the following method which is 

defined as 

 

2

2

1

1
i

i

i

D





−
=

+

                                                                                                                                                                                                  (10) 

3. The proposed methods 

The efficiency of Liu estimator strongly depends on appropriately choosing the shrinkage parameter. A choice of shrinkage parameter 

that is too small leads to overfitting the GLE, while shrinkage parameter that is too large shrinks   by too much, making a bias-variance 

tradeoff. 

Particle swarm optimization (PSO) is a nature- inspired metaheuristic algorithm that was originally proposed by Kennedy and Eberhart 

(1995) for solving continuous optimization problems.  
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PSO inspires the social or collective behavior of animals such as bird flocking and fish schooling. PSO compares with the other computa-

tion intelligence-based algorithms has several advantages, such as simple implementation, computationally higher efficiency, fewer pa-

rameters to tune, scalability and flexibility, robustness. For instance, comparing with genetic algorithm, there is no crossover and muta-

tion genetic operation (Chen et al., 2014; Kiran, 2017; Lin et al., 2008; Lu et al., 2009; Zhou & Dickerson, 2014).  

PSO performs the searching using a population, which is called swarm, of particles. Each particle has three features: (1) position, (2) 

velocity, and (3) fitness value. In PSO, each particle can be represented as a candidate solution (position) in the search space. The parti-

cles fly through the search space by their own efforts and in cooperation with other particles and they follow the best solutions they have 

achieved (local best solutions), as well as tracking the best solutions that they found (the best global solution) (Cervantes et al., 2017; Lai 

et al., 2016; Mirjalili & Lewis, 2013; Wen et al., 2011).  

Mathematically, the search space is assumed to be Q-dimensional and there are m of particles in the swarm where 1,  2 ,q Q=  . Dur-

ing the movement, each particle has a position vector  1 2, , ,i i i iqx x x= x  with a velocity vector  1 2, , ,i i i iqv v v= v . In the PSO algo-

rithm, the best position, which gives the best fitness value for the particle i , is called best previous position denoted as 

 1 2, ,...,i i i iqPbest Pbest Pbest Pbest= . The best position found by all particles is called the global best, which is denoted as 

 1 2, ,...,i i i iqGbest Gbest Gbest Gbest= . In each iteration, the PSO algorithm searches for the optimal solution by updating the position 

and the velocity of the 
thi  particle according to the following two equations: 

 

( ) ( )1

1 1 2 2 ,t t t t t t

iq iq iq iq iq iqv z v c r Pbest x c r Gbest x+ =  +   − +   −                                                                                                                   (11) 

 
1 1,t t t

iq iq iqx x v+ += +                                                                                                                                                                                          (12) 

 

Where t  denotes the iteration in the algorithm, z  is the inertia weight which is used to balance between the global search and the local 

search. In addition, 1c  (the cognition learning factor) and 2c  (social learning factor) are the acceleration coefficients. While, 
1r
and 

2r  

are random values selected from a uniform distribution with (0,1).  

In this paper, a PSO algorithm is proposed to determine the shrinkage parameter matrix. The proposed method will efficiently help to 

reduce the MSE. The parameter configurations for our proposed method are presented as follows.  

1) The number of particles, m , is set to 50 and the number of iterations is 
maxt =100 . The acceleration coefficients 

1c  and 
2c  are set 

within the range [2, 4]. The 
1c  and 

2c  are updating during the iteration according to the following equations:  

 

1 1,min 1,max 1,min

max

( ),
t

c c c c
t

= + −
                                                                                                                                                                       (13) 

 

1 1,min 1,max 1,min

max

( ),
t

c c c c
t

= + −                                                                                                                                                                      (14) 

 

Further, the minimum and the maximum values for the inertial weight are: 
min 0.2z =  and 

max 0.9z = . The inertial weight is updating 

according to the following equation: 

 

max max min

max

( ).
t

z z z z
t

= − −                                                                                                                                                                      (15) 

2) The positions of each particle are randomly determined. The position of a particle represents the shrinkage parameters, ik . Here the 

dimension of each particle is the number of explanatory variables. The initial positions of the particles are generated from a uni-

form distribution within the range [0, 1].  

3) The initial velocities of each particle are generated from a uniform distribution within the range [0, 4].  

4) The fitness function is the MSE 

5) The velocities and positions are updated using Eq. (11) and Eq. (12), respectively. 

6) Steps 4 and 5 are repeated until a maxt  is reached. 

4. Monte Carlo simulation results 

In this section, a comprehensive simulation study was conducted to evaluate the performance of the proposed method. Following 

McDonald and Galarneau (1975), the explanatory variables with different degree of multicollinearity are generated by 

 
2 1 2(1 ) , 1,2,..., , 1,2,..., ,l

ij ij ipx w w i n p p = − + = =                                                                                                                                  (27) 

 

Where 2  represents the correlation between the explanatory variables and 
ijw ’s are independent standard normal pseudo-random num-

bers. The response variable is generated by 

 

0 1 1 ... ,i i p ip iy x x   = + + + +                                                                                                                                                                  (28) 
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Where 
i  is independent and identically normal distributed pseudo-random numbers with zero mean and variance 

2 . Because the 

sample size has direct impact on the prediction accuracy, three representative values of the sample size are considered: 30, 50 and 150. In 

addition, the number of the explanatory variables are considered as {4,8,12}p  . Further, because we are interested in the effect of mul-

ticollinearity, in which the degrees of correlation considered more important, three values of the pairwise correlation are considered with 

{0.90,0.95,0.99} = . Besides, the values of 2  is 1. 

For a combination of these different values of , ,n p  , the generated data is repeated 5000 times and the averaged mean squared errors 

(MSE) is calculated as  

 
5000

1

1ˆ ˆ ˆ( ) ( - ) ( - ),
5000

T

i

MSE     
=

= 
                                                                                                                                                                       (29) 

 

Where ̂  is the obtained Liu estimator by the methods. The MSE values from the Monte Carlo simulation study are reported in Tables 1 

– 3. Several observations can be obtained as follows:  

1) The simulation results indicate that the PSO method of selecting D  is superior to the other used selection methods for all combina-

tions of ,n p , and   in terms of MSE. We can see that PSO method has smaller MSE and significantly lower MSE than others. 

2) It is seen from Tables 1 – 3 that ˆ
PSO  estimator using PSO method is usually more efficient than the OLS estimator for all values of 

,n p  and when multicollinearity is high or severe.  

3) In terms of   values, there is increasing in the MSE values when the correlation degree increases regardless the value of n
 
and p

.  

4) Regarding the number of explanatory variables, it is easily seen that there is a negative impact MSE, where there are increasing in 

their values when the p  increasing from four explanatory variables to twelve explanatory variables. 

5) With respect to the value of n , the MSE values decrease when n  increases, regardless the value of  and p . 

6) All the selection methods of D are superior to the OLS estimator in terms of MSE. 

 
Table 1: Average MSE when n=30 

 OLS PSO D 

p=4 

r=0.90 1.829 0.823 1.231 

r=0.95 1.908 0.906 1.119 

r=0.99 1.888 0.876 1.303 

p=8 

r=0.90 2.702 0.695 1.712 

r=0.95 2.722 0.713 1.739 

r=0.99 2.751 0.745 1.820 

p=12 

r=0.90 3.593 1.477 1.606 

r=0.95 3.635 1.597 2.636 

r=0.99 3.615 1.613 2.721 

 
Table 2: Average MSE when n=50 

 OLS PSO D 

p=4 

r=0.90 1.926 0.924 1.227 

r=0.95 1.934 0.932 1.238 

r=0.99 1.918 0.917 1.829 

p=8 

r=0.90 2.826 0.824 1.828 

r=0.95 2.835 0.831 1.840 

r=0.99 2.819 0.817 1.851 

p=12 

r=0.90 3.765 1.759 2.767 

r=0.95 3.767 1.758 2.772 

r=0.99 3.755 1.735 2.801 

 
Table 3: Average MSE when n=150 

 OLS PSO D 

p=4 

r=0.90 1.942 0.942 1.342 

r=0.95 1.982 0.981 1.382 

r=0.99 1.967 0.967 1.569 

p=8 

r=0.90 2.948 0.947 1.947 

r=0.95 2.939 0.938 1.939 

r=0.99 2.946 0.946 1.950 

p=12 

r=0.90 3.922 1.921 2.921 

r=0.95 3.925 1.924 2.925 

r=0.99 3.913 1.913 2.918 

5. Real application results 

To evaluate the predictive performance of the proposed method and to compare its performance with the other used methods in a real 

data application, the Portland cement dataset is employed. Portland cement dataset became a standard dataset to examine and to remedy 

the multicollinearity. It was widely used by numerous researchers. This dataset comes from an experimental investigation of heat evolved 

during the setting and hardening of Portland cements of varied composition and the dependence of this heat on the percentages of four 

compounds in the clinkers from which the cement was produced. There are 13 observations of heat evolved in calories per gram of ce-

ment ( y ), tricalcium aluminate (
1x ), tetracalcium silicate (

2x ), tetracalcium alumino ferrite (
3x ), and dicalcium silicate (

4x ). 
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Before fitting the linear regression model, the explanatory variables and the response variable are standardized. Then, eigenvalues of 

X X  matrix are calculated with 
1 26.8284 = , 

2 18.9127 = , 
3 2.2392 = , and 

4 0.0194 =  resulting in a condition number 

1 2 1376. 810/ 8  = . Thus, the multicollinearity is existed. As a result, using RE and GRE will be more suitable than the OLS. The 

predictive performance for each used method is computed using the MSE ( 2

1

ˆMSE (1/ ) ( )
n

i i

i

n y y
=

= −
 and the results are given in Table 4. 

It is apparent from Table 4 that there is an improvement of the predictive capability of the PSO comparing with the other used methods, 

where PSO significantly reduced the MSE. The reduction of MSE using PSO was 14.282% and 11.916% compared with OLS and D, 

respectively.  

 
Table 4: Real Application Results for the Used Methods 

Method MSE 

OLS 9303.049 

PSO 8117.127 
D 9215.278 

6. Conclusion 

In this paper, a new shrinkage parameter selection of the generalized Liu estimator, which is depending on employing the particle swarm 

optimization algorithm, was proposed. This proposed method allows us to handle multicollinearity with decreasing the variability of 

shrinkage parameter selection. Simulation and results demonstrate that the proposed method is outperformed several classical methods.  
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