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Abstract 
 

The common issues of high dimensional gene expression data for survival analysis are that many of genes may not be relevant to their 

diseases. Gene selection has been proved to be an effective way to improve the result of many methods. The Cox proportional hazards 

regression model is the most popular model in regression analysis for censored survival data. In this paper, an adaptive penalized Cox 

proportional hazards regression model is proposed, with the aim of identification relevant genes and provides high classification accuracy, 

by combining the Cox proportional hazards regression model with the weighted least absolute shrinkage and selection operator (LASSO) 

method. Experimental results show that the proposed method significantly outperforms two competitor methods in terms of the area un-

der the curve and the number of the selected genes. 
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1. Introduction 

The problem of analyzing time to event data arises in a number of applied fields, such as medicine, biology, public health, and epidemi-

ology (Cockeran et al., 2019; Emura et al., 2012). Nowadays, high dimensional gene expression data are increasingly used for modeling 

various clinical outcomes to facilitate disease diagnosis, disease prognosis, and prediction of treatment outcome (Jian Huang et al., 

2014).  

Regression modeling is a standard practice to study jointly the effects of multiple predictors on a response. The Cox proportional hazards 

model is ubiquitous in the analysis of time-to-event data. When the number of predictors is large, building a Cox proportional hazards 

model including all of them is undesirable because it has low prediction accuracy and is hard to interpret (Karabey & Tutkun, 2017; Leng 

& Helen Zhang, 2006). For these reasons, variable selection has become an important focus in Cox proportional hazards modeling.  

Penalized methods are very effective variable selection methods. These methods combine the Cox proportional hazards model with a 

penalty to perform variable selection and estimation simultaneously. With deferent penalties, several Cox proportional hazards models 

can be applied, among which are, LASSO, which is called the least absolute shrinkage and selection operator (Tibshirani, 1996), smooth-

ly clipped absolute deviation (SCAD) (Fan & Li, 2001), elastic net (Zou & Hastie, 2005), and adaptive LASSO (Zou, 2006). Unques-

tionably, LASSO is considered to be one of the most popular procedures in the class of penalized methods. However, LASSO has a limi-

tation: It applies the same amount of the penalty to all variables. Thus it is an inconsistent variable selection method (Algamal & Lee, 

2015a, 2015b; Zou, 2006).  

To increase the power of informative gene selection, in the present study, an adaptive Cox proportional hazards model is proposed. More 

specifically, a new weight inside LASSO is proposed, which can correctly reduce the estimation error. This weight will reflect the im-

portance amount of each gene. Experimentally, comparisons between our proposed gene selection method and other competitor methods 

are performed. The experimental results prove that the proposed method is very effective for selecting the relevant genes with high pre-

diction accuracy.  

2. Panelized Cox proportional hazards model 

Survival analysis is the statistical branch studying time-to-event data, or more precisely the time elapsing from a well-defined initiating 

event to some particular endpoint. The Cox proportional hazards regression model is one of the most popular and useful models in sur-

vival analysis (Cox, 1972).  

Consider an analysis with time-to-event outcome, we denote the observed triplet as {( , , ) : 1,......, }
i i i

t x i n =  where it  is the survival time 

if 1i =  and censored time if 0i =  and 
1( ,...... )i i ipx x x=  is a p-dimensional explanatory variables. Under the proportional hazards 

framework, the Cox proportional hazards model (CPHM) can be defined as 
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( ) ( ) ( )0| exp ,T

i i i ih t x h t x=                                                                                                                                                                  (1) 

 

Where ( )0 ih t  is the baseline hazard function and 
1( ,..., )T

p  =  is a 1p   vector of unknown regression coefficients. Assuming that 

the subjects are statistically independent of each other, the joint probability of all realized events is the following partial likelihood  
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Where 
iR  is the set of subjects that are at risk just before time it .  

The estimation of the regression parameters of Eq. (1) is commonly carried out by minimizing the partial log likelihood function (Eq. 

(2)) as 
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Panelized Cox proportional hazards model (PCPHM) adds a nonnegative penalty term to Eq. (1), such that the size of variable coeffi-

cients can be controlled. Several penalty terms have been discussed in the literature considering the Cox proportional hazards model (Du 

et al., 2010; Fu et al., 2017; Gui & Li, 2005; Hossain & Ahmed, 2014; Hou et al., 2013; H. H. Huang & Liang, 2018; J. Huang et al., 

2013; Jiang & Liang, 2018; Kauermann, 2005; Li et al., 2014; Lin & Halabi, 2017; Liu et al., 2014; Park & Ha, 2018; Shi et al., 2019; 

Suchting et al., 2019; Wang et al., 2019; Wu et al., 2012; Zhang & Lu, 2007). The LASSO method, proposed by Tibshirani (1996), is one 

of the popular penalty terms. The LASSO performs variable selection and estimation simultaneously by constraining the log-likelihood 

function of variable coefficients. Generally, the PCPHM is defined as 

 

1

log exp( ) ( ),
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Where ( )P   is the penalty term that regularized the estimates. The penalty term depends on the positive tuning parameter, 0  , which 

controls the tradeoff between fitting the data to the model and the effect of the regularization. In other words, it controls the amount of 

shrinkage. For the 0 = , we obtain the CPHM solution in Eq. (3). In contrast, for large values of  , the influence of the penalty term on 

the coefficient estimates increases.  

Without loss of generality, it is assumed that the explanatory variables are standardized, 
1

0
n

iji
x

=
=  and 

 1 2

1
( ) 1, 1,2,...,

n

iji
n x j p−

=
=   . The estimation of the vector   using LASSO is obtained by minimizing Eq. (4) as (Bradic et al., 

2011; Goeman, 2010; Tibshirani, 1997) 
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Equation (5) can be efficiently solved by the coordinate descent algorithm (Simon et al., 2011).  

The LASSO has an advantage in that it is computationally feasible in high-dimensional data. On the other hand, the LASSO has a draw-

back. The LASSO lacks the oracle properties, as stated in Fan and Li (Fan & Li, 2001) because it is equally penalize all the coefficients. 

To alleviate this drawback, Zou (2006) and proposed the adaptive LASSO in which adaptive weights are used for penalized different 

coefficients in the penalty. The basic idea behind the adaptive LASSO is that by assigning a higher weight to the small coefficients and 

lower weight to the large coefficients, it is possible to reduce the selection bias; therefore, it can consistently select the model. Further-

more, the adaptive LASSO solution is continuous from its definition, which enables it to enjoy oracle properties. In panelized Cox pro-

portional hazards model, Zhang and Lu (2007) proposed the adaptive LASSO (ALASSO) as 

 

1 1
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Where T

j 1 pw =(w ,...,w )  is 1p   data-driven weight vector. It depends on the root n -consistent initial values of ̂  and ˆ(| |)j jw  −= , 

where   is a positive constant. For the low dimensional data, initial values of ̂  can be the unpenalized maximum partial likelihood 

estimator. While in the case of the high dimensional data, initial values of ̂  can be the LASSO estimates.  

3. The proposed weight 

In the context of gene expression data problems, the goal of gene selection is to improve prediction performance, to provide faster and 

more cost-effective genes, and to achieve a better knowledge of the underlying problem. High dimensionality can negatively influence 

the performance of the Cox proportional hazards regression model by increasing the risk of overfitting and lengthening the computational 

time. Therefore, removing irrelevant and noisy genes from the original microarray gene expression data is essential for applying Cox 

proportional hazards regression model to analyze the microarray gene expression data. 

It is worthwhile to highlight that our contribution of this paper comes from the following issues. First, although PCPHM with LASSO 

can be applied directly to the high dimensional gene expression data, this method may select irrelevant genes because LASSO has the 
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inconsistent property in gene selection. In other words, the estimates of the PCPHM with LASSO can be biased for large coefficients 

because larger coefficients will take larger penalties. Second, in PCPHM, the genes are usually standardized. However, the standardiza-

tion process may be unreasonable when the variances of genes showing important effect.  

Motivated by these issues, a consistent identification of the true underlying genes is essential to improve the classification accuracy. As a 

result, the standard deviation for each gene is proposed as a weight inside LASSO, where  

 

1
, 1,2,..., ,

ˆj

j

w j p
sd

= =
                                                                                                                                                                                    (7) 

 

Where ˆ
jsd  is the standard deviation for each gene. According to Eq. (7), the gene with low value of standard deviation will receive rela-

tively large amount of weight, while the gene with high value of standard deviation will receive small amount of weight. By this 

weighting procedure, the LASSO can reduce the inconsistent property in gene selection. 

 The detailed of the our proposed weight computation is described in as 

Step 1: Find , 1, 2,..., p.jw j =   

Step 2: Define 
i j iw=x x  

Step 3: Solve the PCPHM, 
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4. Real application 

To evaluate the performance of the proposed method, three real gene datasets were used. A brief introduction and summary of the used 

datasets are given in Table 1. The first dataset is the Diffuse large B-cell lymphoma dataset (DLBCL) (Rosenwald et al., 2002). There are 

240 lymphoma patients’ samples. Each patient’s data consists 7399 gene expression measurements, and its survival time, including cen-

sored or not. 

The second dataset is the Dutch breast cancer dataset (DBC) (van Houwelingen et al., 2006). In this dataset, there was 295 breast cancer 

patients’ information collected in this dataset. Each patient’s data consist 4919 gene expression measurements. 

The third dataset is the Lung cancer dataset (LC) (Beer et al., 2002). This dataset contains 86 lung cancer patients’ information including 

7129 gene expression measurements, survival time and whether the survival time is censored. 

 
Table 1: The Detail of the Used Three Real Microarray Datasets 

Dataset Sample Gene Censored 

DLBCL 240 7399 102 
DBC 295 4919 207 

LC 86 7129 62 

 

To demonstrate the usefulness of the proposed method, comparative experiments with the LASSO and ALASSO are conducted. To do 

so, each gene expression dataset is randomly partitioned into the training dataset and the test dataset, where 70% of the sample are select-

ed for training dataset and the rest 30% are selected for testing dataset. For a fair comparison and for alleviating the effect of the data 

partition, all the used methods are evaluated, for their classification performance metrics using 10 folds cross validation, averaged over 

100 partitioned times. Depending on the training dataset, the tuning parameter value,  , for each used method was fixed as 0 50  . 

To assess how well the model predicts the outcome, the idea of time-dependent receiver-operator characteristics (ROC) curves for cen-

sored data and area under the curve (AUC) as our criteria. The real application results are summarized in Tables 2 – 4.  

Table 2 shows the average results of different used methods applied to the three real datasets. It is obviously that the numbers of genes 

selected by LASSO are much more than those of the ALASSO and the proposed method. Among the other two methods, the proposed 

method selected the least subset of genes. For example, in LC dataset, the proposed method selected 20 gens out of 7129 genes compar-

ing to 61 and 75 selected genes by ALASSO and LASSO, respectively.  

 
Table 2: The Selected Genes Results 

 LASSO ALASSO Proposed 

DLBCL 122 94 55 

DBC 87 44 34 

LC 75 61 20 

 

In order to test the prediction accuracy of the different used methods, their average values of AUC for both the training and testing da-

taset were given in Tables 3 and 4, respectively. In the observation of Table 3, in terms of AUC, the proposed method achieved a maxi-

mum accuracy of 95.5%, 96.1% and 97.4% for DLBCL, DBC, and LC datasets, respectively. Furthermore, it is clear from the results that 

the proposed method outperformed the ALASSO for all datasets. This improvement in AUC is mainly due to the proposed method abil-

ity in taking into account the new weight. Moreover, the proposed method improved the classification accuracy compared to LASSO. 

The improvements were 8.5%, 7.7%, and 7.3% for the DLBCL, DBC, and LC datasets, respectively. 

 
Table 3: The AUC Results for the Training Dataset 

 LASSO ALASSO Proposed 

DLBCL 0.871 0.912 0.955 

DBC 0.884 0.924 0.961 

LC 0.901 0.937 0.974 
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It can also be seen from Table 4 that the proposed method has the best results in terms of the AUC for the testing dataset. The proposed 

method has the largest AUC of 93.4%, 94.7%, and 95.8% for the DLBCL, DBC, and LC datasets, respectively. This indicated that the 

proposed method significantly succeeded in identifying the patients who are in fact having the cancer with a probability of greater than 

0.93.  

 
Table 4: The AUC Results for the Testing Dataset 

 LASSO ALASSO Proposed 

DLBCL 0.854 0.905 0.934 
DBC 0.814 0.911 0.947 

LC 0.882 0.923 0.958 

5. Conclusion 

This paper presents an adaptive penalized Cox proportional hazards regression model by combining the Cox proportional hazards regres-

sion model with the weighted LASSO to identify the relevant genes in gene expression data. Our proposed method was experimentally 

tested and compared with other existing methods. The superior prediction performance of the proposed method was shown through the 

AUC. Meeting this criterion nominates the proposed method as a promising gene selection method.  
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