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Abstract 
 

This study demonstrated the very essence of remedying the presence of heteroscedasticity, where it existed, in regression modelling. Two 

different hypothetical data, Data A (the Original) and Data B (the Original), were used in this study for the purpose of illustration. The 

normality, multicollinearity and autocorrelation assumptions were satisfied, but the Breusch-Pagan test and the White test established the 

existence of heteroscedasticity in the two datasets. The estimated multiple linear regression model for Data A (the Original) was statistically 

significant with an R-square value of 0.976, an AIC value of 332.5929, and an SBC value of 347.2533; and the one for Data B (the Original) 

was also statistically significant with an R-square value of 0.553, an AIC value of 69.89669, and an SBC value of 82.15499. The Log-

transformation was applied on the variables in Data A (the Original) and Data B (the Original) to give rise to new sets of data, Data A 

(Now with Heteroscedasticity Remedied) and Data B (Now with Heteroscedasticity Remedied); which equally satisfied the normality, 

multicollinearity and autocorrelation assumptions, and also satisfied that there were no existence of heteroscedasticity in the two datasets. 

Now, the estimated multiple linear regression model for Data A (Now with Heteroscedasticity Remedied) was statistically significant with 

an R-square value of 0.986, an AIC value of -135.021, and an SBC value of -120.361; and the estimated model for Data B (Now with 

Heteroscedasticity Remedied) was statistically significant with an R-square value of 0.624, an AIC value of -32.0801, and an SBC value 

of -19.8218. From the points of view of the values of the R-square (0.986>0.976 and 0.624>0.553), AIC (-135.021<332.5929 and -

32.0801<69.89669) and SBC (-120.361<347.2533 and -19.8218<82.15499), it was evident that the estimated regression models for Data 

A (Now with Heteroscedasticity Remedied) and Data B (Now with Heteroscedasticity Remedied) were, respectively, better models when 

compared to the regression models for Data A (the Original) and Data B (the Original). 
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1. Introduction 

Regression analysis is a set of statistical processes for establishing the relationship among related variables. According to Gujarati [7], 

regression analysis is concerned with the study of the dependence of one variable (the dependent variable) on one or more other variables 

(the independent variables) with a view to estimating or predicting the (population) mean or average value of the former in terms of the 

known or fixed (in repeated sampling) values of the latter. The Ordinary Least Squares (OLS) method is one of the statistical tools widely 

used to estimate the parameters of the linear regression model. Under the usual assumptions, the least-squares estimators possess many 

desirable properties.  

Virtually every introduction to OLS regression includes an overview of the assumptions behind this method to make sure that the inferences 

obtained from it are warranted [2]. Homoscedasticity is one of the most important assumptions of the OLS method. Homoscedasticity 

simply implies that the error terms for each observation are the same for all observations. However, in a situation where the error terms do 

not have constant variance, it is regarded to be heteroscedastic. Heteroscedasticity is usually defined as some variation of the phrase “ non-

constant error variance” , or the idea that, once the predictors have been included in the regression model, the remaining residual variability 

changes as a function of something that is not in the model [3 - 5], [12]. 

There are several causes of heteroscedasticity, one of which is incorrect functional form of the regression model. Williams [18] opined that 

measurement error can cause heteroscedasticity, and also a situation where there are subpopulation differences or other interaction effects. 

Heteroscedasticity or unequal variances, often occurs in cross-sectional data; for instance, mixing datasets with different measures of scale. 

Clearly, regression models with cross sectional data, especially in cases where the scale of the dependent variable varies across observa-

tions, heteroscedasticity is more likely to occur. According to Gujarati [7], heteroscedasticity can also arise as a result of the presence of 

outliers (that is, observation from a different population to that generating the remaining sample observation). Another cause of heterosce-

dasticity is model misspecification. Gujarati [7] explained that heteroscedasticity may be present in the regression model due to the fact 

that some important variables are omitted from the model. According to Nwakuya and Nwabueze [13], most economic data show the 

presence of heteroscedasticity; and heteroscedasticity mostly occurs because of underlying errors in variables, outliers, misspecification of 

model amongst others. 

http://creativecommons.org/licenses/by/3.0/
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The problem of heteroscedasticity imposes a great challenge for estimation of the regression model. In the presence of heteroscedasticity, 

the OLS estimators and the forecasts based on them would still be unbiased and consistent, but they would no longer be BLUE. According 

to Adepoju and Tayo [1], the most damaging consequence of heteroscedasticity is that the OLS estimators of the parameter covariance 

matrix, whose diagonal elements are used to estimate the standard errors of the regression coefficients, become biased and inconsistent. 

The effects of heteroscedasticity can be severe, as it can result to the estimates of the regression coefficients being biased and inconsistent; 

which can have serious consequences for hypothesis testing, decision-making, and also reduce the statistical power of the analysis. Hayes 

and Cai [9] explained that the outcome of the test statistic from the regression model is not influenced by heteroscedasticity either, but the 

F-test and t-test associated are being affected. 

Consequently, lack of efficiency of the OLS estimators due to the presence of heteroscedasticity makes the forecasting and prediction from 

the model to be unreliable. Therefore, a remedial measure is surely to be called for. Remedying the presence of heteroscedasticity in the 

regression model will guarantee making the OLS estimators of the regression model parameters to be more reliable. In other words, the 

remediation of heteroscedasticity in the regression model is paramount in order to obtain the estimators that are BLUE. However, when 

there is no presence of heteroscedasticity, one will simply go ahead with the regression modelling; as have been shown in the literature 

(see, for example, Ohaegbulem and Iheaka, [15]). Some past works have also showcased the fact that the presence of heteroscedasticity in 

regression modelling had to be remedied before going on to arrive at better models with valid and more reliable estimates for further 

inferences. A few of these past works are reviewed here. 

Nwakuya and Nwabueze [13] employed the Ordinary Least Square (OLS) regression to establish the Multiple Linear Regression (MLR) 

model of the relationship that existed among GDP (Y) and Inflation (X1), Trade-index (X2), Civil-liability (X3) and Population (X4) in an 

economic data called Africa (collected from six African countries with a sample size of 120 for each variable), which they said they got 

from the R package. They applied five different heteroscedasticity tests (which include Park test, Glejser test, Goldfeld Quandt test, White 

test and Breusch-Pagan test) and all the tests showed presence of heteroscedasticity, as they confirmed statistical significance at 5% level 

of significance. The result of the estimated multiple regression model before the application of the Box-Cox transformation as a corrective 

measure to the presence of heteroscedasticity was given as, 

 

1 2 3 4 .ˆ -7.41 - 6.635   19.50  638.4 0.001812i i i iX X XY X+= +  

 

The results before Box-Cox transformation also revealed that an AIC and SIC values were obtained as 1667.924 and 1684.394, respectively. 

The p-Value of 0.000 (or equivalently, an F-statistic of 63.96) showed that the regression model was significant (implying that the regres-

sion model was of good-fit to the dataset). The Box-Cox transformed data proved to be normally distributed, with a p-Value of 0.057. Also, 

it was confirmed that there was no multicollinearity among the regressors. The result of the regression estimated model after Box-Cox 

transformation was given as, 

 

1 2 3 4 + 0.000295  - 0.001038 + 0.02223 - .ˆ 54.40 0.000000002934i i i iX X X XY =  

 

The results after Box-Cox transformation also revealed that an AIC and SIC values were obtained as -640.6783 and -624.2087, respectively. 

An R2 values before the transformation and after the transformation were obtained as 0.6993 and 0.7341, respectively. The p-Value of 

0.000 (or equivalently, an F-statistic of 75.94) showed that the model was significant. The result of the Park test, Glejser test, Goldfeld 

Quandt test and Breusch Pagan test confirmed statistical insignificance at 5% level of significance (with p-Values of 0.3397, 0.2968, 

0.9838, 0.2009, respectively); and also the White test was also insignificant 2 2

9 3.325)nR =    =( . In conclusion, the values of the R2 

and AIC had demonstrated that the model after the transformation was a better regression model compared to the regression model before 

the transformation. 

Zhou et al. [20] carried out a multiple regression model among the dependent variable, logBaseCr, and the explanatory variables, Age, 

Gender, logWeight, Albumin and Haemoglobin. The result showed that the multiple regression model among logBaseCr and the explana-

tory variables was, 

 

0.0070 0.1130 0.2578 0.0755 –0.0421logBaseCr Age Gender logWeight Albumin Hgb= + + +  

 

The results also showed that Age, logWeight and Haemoglobin had a statistically significant relationship with logBaseCr at 5% level of 

significance (with p-Values of 0.01, 0.019, 0.01, respectively), while Gender and Albumin were not statistically significant factors. The 

AIC and SIC values were obtained as 207.1 and 229.0, respectively. The proposed two-step procedure was applied to examine the patterns 

of residual plots rigorously. The covariate specific p-Values were found to be 0.086, 0.25, 0.25, 0.0004 and 0.93 for Age, Gender, log-

Weight, Albumin and Hgb, respectively. Given the significance level 0.05, the null hypothesis of homoscedasticity was rejected. The 

Weighted Least Squares (WLS) method was employed to correct the presence of heteroscedasticity in the regression model. With the 

correction, the multiple regression model among logBaseCr and the explanatory variables was given as,  

 

0.0540 0.1398 0.2790 0.0889 – 0.0466logBaseCr Age Gender logWeight Albumin Hgb= + + +  

 

The results also revealed that all the regressors used in this study had a statistically significant relationship with logBaseCr log at 5% level 

of significance (with p-Values of 0.01, 0.036, 0.01, 0.041 and 0.010, respectively). The AIC and SIC values were obtained as 185.2 and 

207.1, respectively. It was concluded that misspecification of the random effects structures may affect the estimation efficiency of the fixed 

effects.  

Gidigbi and Donga [6] studied the domestic, foreign direct investment and economic growth nexus in selected African countries. Multiple 

regression analysis was used to analyse the logarithm of data on GDP (LGDP), Gross Domestic Investment (LGDI), Foreign Direct In-

vestment (LFDI) and Current Account Balance (LCAB). The unit root test results revealed that LGDP was stationary at first difference at 

1% statistical significance level with the value of statistic, -16.5227. In addition, LGDI, LFDI and LCAB were stationary at first difference 

as indicated by the Levin, Lin & Chu t* statistic values of -121.580, -17.2090 and - 4.60164, which was statistically significant at 1% 

significance level, respectively. The results of the Cointegration test revealed that LGDP, LGDI, LFDI, and LCAB, exhibited a long-run 

relationship, which implied that the variables could be put together in a regression model. Panel regression estimation was adopted in 

correcting the problem of heteroscedasticity and autocorrelation estimation. The results also revealed that all the regressors had a statistical 
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significant relationship with LGDP at 1% and 5% level of significance. An R2 value of 0.93 was obtained, which implied that the regressors 

accounted for almost 93.20% of the total variations in the regressand. This indicated that about 6.80% variability could be attributed to 

other regressors outside the ones featured in the model. The F-statistic of 3443.27 implied that the model was good fit to the dataset at 1% 

significance level. It was concluded that the investment in general and domestic investment, in particular, was very relevant to the economic 

growth in the continent.  

Jabłońska [10] conducted a study involving the modelling of the quality of life of older people. The Multiple regression analysis was used 

to explain the effect of the regressors on the quality of life for both men and women ranging from the age of sixty and above. The results 

of quality of life model (both men and women) assumptions indicated that errors normality with mean equals 0, significant linear structure 

of the model, no autocorrelation and no multicollinearity. Also, the results of testing the homoscedasticity assumptions in the model yielded 

White s test (p = 0.001) and BPG test (p = 0.009) for Men’ s quality of life model, verified that the test was insignificant. Also, testing the 

homoscedasticity assumption in Women’ s quality of life model showed that the test was significant (White test: p=0.452; BPG test: 

p=0.590). Thus, the result showed that the model among Men’ s quality of life and the regressors was, 

 

0.095 0.057 1.169 0.189 0.114 0.58 1.654 0.15QL BML Age ADL SN LO PLC PR SS= − − − + − + + +  
 

Heteroscedasticity-Consistent covariance matrix estimators (HC-estimators) were used to correct for the presence of heteroscedasticity in 

the model. The result showed HC4m was the best for the model because it was much more conservative than HC1, HC2 and HC3. As a 

result of the use of HC4m-estimator, four variables (ADL, social network, loneliness and social support) were considered significant in the 

context of men’ s quality of life. The result also showed the relationship between Women’ s quality of life and the regressors was, 

 

0.01 0.114 1.121 0.128 0.076 1.274 0.887 0.122QL BML Age ADL SN O PLC PR SS= − − − + − + + +  
 

The result demonstrated that OLS method had similar result with HC2m, and with the use of HC4m, four variables (ADL, SN, loneliness 

and social support) were considered significant in the context of Women’ s quality of life. It was concluded that the use of HC4m was 

preferable for correcting the presence of heteroscedasticity in the model.  

Thus, this present study is centred on expressing the very essence of going about the remediation of the presence of heteroscedasticity 

(where/when it occurs) in a regression model; and not to (as is usually the case with most random researchers) go ahead with the estimation 

of the regression model parameters and the onward engagement of making predictions with the model so established without correcting 

for the presence of heteroscedasticity.  

2. Method 

The Multiple Linear Regression (MLR) analysis is used to establish the relationship that exists among a dependent variable and a set of 

related independent variables. This is achievable with the use of the Ordinary Least Squares (OLS) procedure to estimate the coefficients 

for the independent variables. Furthermore, the analysis shall evaluate the contributions of each of the independent variables to the depend-

ent variable. 

The multiple linear regression model, which explains the relationship that exists among the dependent and independent variables, is usually 

given as, 

 

0 1 1 2 2 k k iY X X X e=  + + + + +                                                                                                                                                         (2.1) 

 

Where, 

 

Y, X ’ s,  ’ s and ie  (i = 1, 2, , k) are the dependent variable, independent variables, the estimated parameters, and the error term, 

respectively. 

Equation (2.1) can also be expressed in matrix terms (see, for example Kurtner et al. [12]) as, 

 

( )( )( 1) ( 1)1

Y
n n k nk

X 
  

= + 
                                                                                                                                                                                     (2.2) 

 

Where, 

 

1 2( , , , )nY Y Y Y =                                                                                                                                                                                     (2.3) 
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                                                                                                                                                                       (2.4) 

 

0 1 2( , , )k
 =                                                                                                                                                                                  (2.5) 

 

And 

 

1 2( , , , )n
 =                                                                                                                                                                                  (2.6) 
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Applying the Ordinary Least Squares (OLS) method (see, for example Kurtner et al. [12]) the regression model parameters, i ’ s, are 

estimated as, 

 
1ˆ )T TX X X Y− =(                                                                                                                                                                                      (2.7) 

 

Then, the estimated regression model will be obtained by substituting the values of the ˆ
i ’ s in (2.7) into (2.1).  

Once the multiple regression model is developed, its predictive accuracy would be evaluated using the coefficient of multiple determination, 

R2, the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) or the Schwarz-Bayesian Criterion (SBC). 

Prior to the estimation of the multiple regression model expressed above, a number of assumptions are to be fulfilled so that the estimated 

regression model parameters will be reliable. According to Gujarati [7], these assumptions include the followings; 

i) The regression model must be linear in the parameters. 

ii) The independent variable, X, is assumed to be non-stochastic. That is, the values taken by the independent variables, X, are consid-

ered fixed in repeated samples. 

iii) The error terms, 
ie , are normally distributed, having the expected value or mean of zero.   

iv) Homoscedasticity or equal variance of the error terms, 
ie . That is, the variance of ie  is the same for the observations.  

v)  No serial correlation or zero autocorrelation between the disturbances. Given that any two X values, 
iX  and 

jX  ( )i j , the 

correlation between any two error ie  and 
je  is zero. 

vi) The covariance between ie  and iX  is zero. That is, ( ) 0i iE e X = . 

vii) The independent variables are linearly independent (that is, it is not possible to express any independent variable as a linear combi-

nation of the other). In other words, there is no perfect multicollinearity. 

viii) The number of observations must be greater than the number of parameters to be estimated. 

ix) Variability in the 
iX  values exists (that is, the 

iX  values in a given sample must not all be the same). 

x) The regression model is correctly specified bias and the independent variables are measured with no error. 

Interestingly, though, the most pronounced assumptions that are supposedly to be met are those of Normality, Heteroscedasticity, Auto-

correlation and Multicollinearity. This, however, does not imply that the other assumptions of multiple regression analysis are of less 

importance. 

Tests for the Assumptions of Regression Analysis 

It is usually expected that the tests for the assumptions of regression analysis be conducted first before the regression analysis is carried 

out because it is the most important aspect of regression analysis which indicates that the model will be perfectly fitted. 

a) Test for the Normality Assumption 

One of the assumptions required by OLS method for the estimability of the parameters in the regression model is that the error terms are 

normally distributed. Gujarati [7] stated that a simple graphical representation (either a histogram of residuals or a normal probability plot) 

can be used to explain whether the residuals are normally distributed. With the histogram of residuals, the shape of the normal distribution 

curve can be ascertained on it; while for normal probability plot, the Anderson-Darling test will be used to study the shape of the probability 

density function of the random variables. 

The procedure for the Anderson-Darling test for the normality assumption are very much discussed and outlined in, for example, [17] and 

[7]. 

b) Test for Homoscedasticity Assumption 

Homoscedasticity or equal variance of the error term is another assumption required by the OLS method for the estimability of the param-

eters in the regression model. In order to confirm the existence of heteroscedasticity, some commonly used tests are namely; Breusch– Pa-

gan (sometimes referred to as Breusch– Pagan– Godfrey) test, Spearman Rank Correlation test and Goldfeld-Quandt test. 

The Spearman Rank Correlation test is simple and it is applicable to data with small and large sample sizes. The Goldfeld-Quandt test is 

applicable when the number of observations is greater than twice the number of independent variables. The success of the Goldfeld-Quandt 

test depends on the value of the middle observations being omitted and identifying the correct X-variable with which to order the observa-

tions. This limitation of the Goldfeld-Quandt test can be avoided if the Breusch– Pagan test is considered [7]. 

For the procedure of conducting the Breusch– Pagan– Godfrey test, the Spearman Rank Correlation test and the Goldfeld-Quandt test for 

the heteroscedasticity assumption, see, for example, [7] and [14]. 

c) Test for Multicollinearity Assumption 

Some common tests for multicollinearity include the Farrar-Glauber test and Variance Inflation Factor (VIF); with the VIF being the most 

prominent in terms of usage. The VIF measures how much the variance of the estimated regression parameters are inflated as compared to 

when the independent variables are not linearly related (see, for example, Yoo et al, [19]). The null hypothesis of ‘no perfect multicolline-

arity among the independent variables’ is to be rejected if and only if calculated test statistic, VIF, is greater than or equal to 10 (see, for 

example, Hair et al, [8]; Rawlings et al, [16]). 

The procedures of carrying out the three-stage Farrar-Glauber test and the VIF are as outlined in; see for example, [11], [8] and [16]. 

d) Test for Autocorrelation Assumption 

The usually employed test for testing for the autocorrelation assumption in regression analysis is the Durbin-Watson test. The procedure 

of this test is outlined in; see for example, [11]. According to Koutsoyiannis [11], the null hypothesis for the Durbin-Watson test of ‘no 

autocorrelation’ is to be rejected if and only if the calculated Durbin-Watson test statistic, DW , is not approximately equal to 2. 

Remediations to Unsatisfied Assumption(s) of Regression Analysis 

e) Remedying the Incidence of Heteroscedasticity 

The presence of heteroscedasticity in the multiple linear regression model does not destroy the unbiasedness and consistency properties of 

the OLS estimators, but they are no longer efficient, not even asymptotically. Gujarati [7] stated that this lack of efficiency makes the 

outcome of the usual hypothesis-testing to be dubious. Gujarati [7] further elaborated that there are two approaches to remediation; the first 

one is when the error variance, 2

i , is known and the second one is when 2

i  is unknown. According to Gujarati [7], the Weighted Least 

Square (WLS) approach, the Feasible Generalized Least Square (FGLS) approach, etc., can be applied to remedy the heteroscedasticity in 
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the regression model if the error variance, 2

i , is known; while Log-transformation of the variables, Inverse and Square root transfor-

mations, etc., can be applied for correcting the heteroscedasticity in the regression model if the error variance, 2

i , is unknown. 

However, in this study, the Log-transformation method of correcting the presence of heteroscedasticity shall be employed where and when 

the need arises. The procedure of the Log-transformation method involves taking the natural logarithmic of each entry in the dataset and 

then applying the Ordinary Least Square (OLS) method (see, Gujarati [7]). According to Gujarati [7], a log-transformation such as, 

 

1 2i i iInY InX e=  + +                                                                                                                                                                                  (2.8) 

 

very often reduces heteroscedasticity when compared with the regression, 

 

1 2i i iY X e=  + +                                                                                                                                                                                      (2.9) 

 

f) Remedying the Incidence of Multicollinearity 

Koutsoyiannis [11] stated that the serious effects of the existence of multicollinearity on the estimates of the regression model coefficients 

may be remedied by adopting any of the followings;  

i) Application of Method Incorporating Extraneous Quantitative Information; 

ii) Increase of the Size of the Sample; 

iii) Substitution of Lagged Variables for other Explanatory Variables in Distributed-Lag Models; 

iv) Introduction of Additional Equation in the Model; or 

v) Application of the Principal Component Method. 

It may be interesting to know that if the regression model parameters estimation is mainly for forecasting purposes, the incidence and the 

consequent remediation of multicollinearity in the data may be ignored. According to Koutsoyiannis [11], the estimates of the original 

model may be accepted despite the existence of multicollinearity, only if the purpose of the estimation is for forecast, and provided that 

the same pattern of multicollinearity of the independent variables continue in the period of prediction. Koutsoyiannis [11] further added 

that, in such a case, if one tries to remove the independent variables responsible for multicollinearity, it will lead to specification bias. 

3. Data and analyses 

This study showcased two different HYPOTHETICAL datasets (Data A and B) just for the purpose of illustrating the very context of this 

research. Data A (the Original), having six (6) predictor variables and one response variable, are as presented in Columns 1 to 7 of Table 

3.1 (see Appendix A); while Data B (the Original), having five (5) predictor variables and one response variable, are as presented in 

Columns 1 to 6 of Table 3.2 (see Appendix B). 

Adopting (2.1), this study uses the following theoretical model to assess the independent variables that are associated with the dependent 

variable; and for Data A and B, the multiple regression equations will, respectively, be given as, 

 

0 1 1 2 2 3 3 4 4 5 5 6 6YA A A A A A A A A A A A A A AX X X X X X e=  + + + + + + +                                                                                                (2.10) 

 

And 

 

0 1 1 2 2 3 3 4 4 5 5YB B B B B B B B B B B B BX X X X X e=  + + + + + +                                                                                                                  (2.11) 

 

The data analyses in this study shall be done with the aid of the following statistical packages; Microsoft Office Excel (2016), Minitab 

(2019), SPSS version 26, and NCSS (2012). The results outputs from the various computer packages employed in testing the relevant 

assumptions of the multiple linear regression and correlation analyses, as well as the main data analyses are as presented in Sub-sections 

3.1 and 3.2. 

3.1. Analyses on data a 

The procedure of carrying out the Multiple Linear Regression Analysis, starting from the tests of assumptions to the establishment of the 

Multiple Linear Regression Model for Data A is hereby presented in this sub-section. 

3.1.1. Analyses on data a (the original) 

The procedure of the Multiple Linear Regression Analysis (MLRA) is carried out on Data A (the Original). The results outputs of each 

stage of this procedure are presented in Tables 3.3 to 3.9 and Figure 3.1. 

3.1.1.1. Descriptive statistics for data a (the original) 

The descriptive statistics for Data A (the Original), which include the mean, the standard deviation, and the minimum and the maximum 

values for each of the six independent variables and the dependent variable are presented in Table 3.3. 

 
Table 3.3: Descriptive Statistics for Data A (the Original) 

Variable Count Mean Standard Deviation Minimum Maximum 

1AX  60 12366.34 16251.95 71.02 58472.88 

2 AX  60 -85.42717 762.2006 -5889.73 99.6 

3AX  60 13.93617 6.263899 6 29.8 

4 AX  60 3506.791 6128.483 13.52 28729.56 
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5AX  60 9.136666 6.539916 1.9 26.4 

6AX  
60 15.985 5.255791 8.46 30.4 

AY  60 66.2605 93.05166 0.55 358.81 

3.1.1.2. Testing for the normality assumption on data a (the original) 

Data A (the Original) were tested for the normality assumption using the Anderson-Darling test, Shapiro-Wilk test and the d’ Agostino-

Pearson test. The results outputs of these tests are presented in Figure 3.1 and Table 3.4, respectively. 

 

 
Fig. 3.1: The Anderson-Darling Test for the Normality Assumption on Data A (The Original). 

 
Table 3.4: Shapiro-Wilk Test and d Agostino-Pearson Test for Normality Assumption on Data A (the Original) 

Shapiro-Wilk Test  D Agostino-Pearson Test 

W-stat 0.967586  DA-stat 3.828925 
P-value 0.111069  P-value 0.147421 

alpha 0.05  alpha 0.05 

Normal yes  Normal yes 

3.1.1.3. Testing for the heteroscedasticity assumption on data a (the original) 

Data A (the Original) were tested for the heteroscedasticity assumption using Breusch-Pagan test and White test for heteroscedasticity. The 

results outputs of this test are presented in Table 3.5. 

 
Table 3.5: Breusch-Pagan Test and White Test for Heteroscesdasticity Assumption on Data A (the Original) 

 Breusch-Pagan Test White Test 

LM stat 20.26848 18.43241 

df 6 2 
P-value 0.00248 9.93E-05 

   

F stat 4.506202 12.63782 
df1 6 2 

df2 53 57 

P-value 0.000929 2.87E-05 

3.1.1.4. Multiple linear regression analysis for data a (the original) 

The results outputs for the multiple linear regression analysis on Data A (the Original) are presented in Tables 3.6 to 3.8. 

 
Table 3.6: Regression Model Coefficients for Data A (the Original) 

Variable 
Unstandardized Coefficients Standardized Coefficients 

t-stat Sig. 
Correlations Collinearity Statistics 

B Std. Error Beta Zero-order Partial Part Tolerance VIF 

Intercept -8.537 10.363  -.824 .414      

1AX  .001 .000 .226 6.341 .000 .797 .657 .134 .353 2.837 

2 AX  -.001 .003 -.004 -.203 .840 .092 -.028 -.004 .974 1.026 

3AX  
.971 .392 .065 2.475 .017 .398 .322 .052 .642 1.557 

4 AX  .010 .000 .674 23.355 .000 .941 .955 .494 .539 1.857 

5AX  2.827 .484 .199 5.842 .000 .782 .626 .124 .387 2.581 

6AX  -1.032 .494 -.058 -2.092 .041 .328 -.276 -.044 .577 1.734 

 
Table 3.7: Model Summary for Data A (the Original) 

Multiple 

R 

R 

Square 

Adjusted R 

Square 

Std. Error of the Esti-

mate 

Change Statistics 
Durbin-Wat-

son 
R Square 

Change 

F 

Change 
df1 df2 

Sig. F 

Change 

.988 .976 .974 15.133 .976 362.969 6 53 .000 1.931 
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Table 3.8: Additional Overall Fit of the Regression Model for Data A (the Original) 

 AIC 332.5929 

 AICc 335.4165 

 SBC 347.2533 

3.1.1.5. Multiple linear correlation analysis for data a (the original) 

The results outputs for the multiple linear correlation analysis on Data A (the Original) are presented in Table 3.9. 

 
Table 3.9: Correlations for Data A (the Original) 

 Variable AY  
1AX  

2 AX  
3AX  

4 AX  
5AX  

6AX  

Correlations 

AY  1.000 0.797 0.092 0.398 0.941 0.782 0.328 

1AX  0.797 1.000 0.099 0.363 0.632 0.738 0.440 

2 AX  0.092 0.099 1.000 0.153 0.072 0.076 -0.014 

3AX  0.398 0.363 0.153 1.000 0.272 0.269 -0.248 

4 AX  0.941 0.632 0.072 0.272 1.000 0.631 0.315 

5AX  
0.782 0.738 0.076 0.269 0.631 1.000 0.457 

6AX  0.328 0.440 -0.014 -0.248 0.315 0.457 1.000 

3.1.2. Analyses on data a (now with heteroscedasticity remedied) 

The procedure of the Multiple Linear Regression Analysis is carried out on Data A which failed the heteroscedasticity assumption but is 

now corrected. The results outputs of the procedure are presented in Tables 3.10 to 3.16 and Figure 3.2. 

3.1.2.1. Descriptive statistics for data a (now with heteroscedasticity remedied) 

The descriptive statistics for Data A (Now with Heteroscedasticity Remedied), which include the mean, the standard deviation, and the 

minimum and the maximum values for each of the six independent variables and the dependent variable are presented in Table 3.10. 

 
Table 3.10: Descriptive Statistics for Data A (Now with Heteroscedasticity Remedied) 

Variable Count Mean Standard Deviation Minimum Maximum 

1AInX  60 8.082163 2.032619 4.262961 10.97632 

2AInX  60 2.19597 1.017399 -0.1508229 4.601162 

3AInX  60 2.525065 0.4845554 1.791759 3.394508 

4AInX  60 6.546892 2.001891 2.60417 10.26568 

5AInX  60 1.979515 0.6837802 0.6418539 3.273364 

6AInX  60 2.720674 0.3196657 2.135849 3.415223 

AInY  60 2.22636 2.463846 -0.597837 5.882793 

3.1.2.2. Testing for the normality assumption on data a (now with heteroscedasticity remedied) 

Data A (Now with Heteroscedasticity Remedied) were tested for the normality assumption using the Anderson-Darling test, Shapiro-Wilk 

test and the d’ Agostino-Pearson test. The results outputs of these tests are presented in Figure 3.2 and Table 4.11, respectively. 

 

 
Fig. 3.2: The Anderson-Darling Test for the Normality Assumption on Data A (Now with Heteroscedasticity Remedied) 

 
Table 3.11: Shapiro-Wilk Test and d Agostino-Pearson Test for Normality Assumption on Data A (Now with Heteroscedasticity Remedied) 

Shapiro-Wilk Test  d Agostino-Pearson Test 

W-stat 0.975292  DA-stat 4.584655 

P-value 0.262465  P-value 0.101031 
alpha 0.05  alpha 0.05 

Normal yes  Normal yes 
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3.1.2.3. Testing for the heteroscedasticity assumption on data a (now with heteroscedasticity remedied) 

Data A (Now with Heteroscedasticity Remedied) were tested for the heteroscedasticity assumption using Breusch-Pagan test and White 

test for heteroscedasticity. The results outputs of this test are presented in Table 3.12. 

 
Table 3.12: Breusch-Pagan Test and White Test for Heteroscesdasticity Assumption on Data A (Now with Heteroscedasticity Remedied) 

 Breusch-Pagan Test White Test 

LM stat 7.08136 2.823156 
df 6 2 

P-value 0.313389 0.243758 
   

F stat 1.182041 1.407212 

df1 6 2 
df2 53 57 

P-value 0.330032 0.2532 

3.1.2.4. Multiple linear regression analysis for data a (now with heteroscedasticity remedied) 

The results outputs for the multiple linear regression analysis on Data A (Now with Heteroscedasticity Remedied) are presented in Tables 

3.13 to 3.15. 

 
Table 3.13: Regression Model Coefficients for Data A (Now with Heteroscedasticity Remedied) 

Variable 
Unstandardized Coefficients Standardized Coefficients 

t-stat Sig. 
Correlations Collinearity Statistics 

B Std. Error Beta Zero-order Partial Part Tolerance VIF 

Intercept -5.658 .574  -9.852 .000      

1AInX  
.319 .045 .263 7.027 .000 .852 .694 .114 .188 5.320 

2AInX  
-.234 .055 -.097 -4.263 .000 .333 -.505 -.069 .511 1.956 

3AInX  
1.226 .161 .241 7.621 .000 .811 .723 .124 .264 3.794 

4AInX  .707 .040 .574 17.680 .000 .945 .925 .287 .250 4.000 

5AInX  .384 .091 .107 4.218 .000 .614 .501 .069 .413 2.419 

6AInX  
-.978 .176 -.127 -5.558 .000 .077 -.607 -.090 .506 1.977 

 
Table 3.14: Model Summary for Data A (Now with Heteroscedasticity Remedied) 

Multiple R R Square Adjusted R Square 
Std. Error of the Esti-

mate 

Change Statistics 
Durbin 

-Watson R Square Change 
F 

Change 
df1 df2 Sig. F Change 

.993 .986 .984 .307 .986 623.148 6 53 .000 1.791 

 
Table 3.15: Additional Overall Fit of the Regression Model for Data A (Now with Heteroscedasticity Remedied) 

 AIC -135.021 
 AICc -132.198 
 SBC -120.361 

3.1.2.5. Multiple linear correlation analysis for data a (now with heteroscedasticity remedied) 

The results outputs for the multiple linear correlation analysis on Data A (Now with Heteroscedasticity Remedied) are presented in Table 

3.16. 

 
Table 3.16: Correlations for Data A (Now with Heteroscedasticity Remedied) 

 Variable AInY  
1AInX  

2AInX  
3AInX  

4AInX  
5AInX  

6AInX  

Correlations 

AInY  1.000 .852 .333 .811 .945 .614 .077 

1AInX  .852 1.000 .577 .692 .763 .616 .206 

2AInX  .333 .577 1.000 .470 .228 .166 -.123 

3AInX  .811 .692 .470 1.000 .652 .241 -.262 

4AInX  .945 .763 .228 .652 1.000 .637 .258 

5AInX  .614 .616 .166 .241 .637 1.000 .495 

6AInX  .077 .206 -.123 -.262 .258 .495 1.000 

3.2. Analyses on data b 

The procedure of carrying out the Multiple Linear Regression Analysis, starting from the tests of assumptions to the establishment of the 

Multiple Linear Regression Model for Data B is hereby presented in this sub-section. 

3.2.1. Analyses on data b (the original) 

The procedure of the Multiple Linear Regression Analysis is carried out on Data B (the Original). The results outputs of the procedure are 

presented in Tables 3.17 to 3.23 and Figure 3.3. 

3.2.1.1. Descriptive statistics for data b (the original) 

The descriptive statistics for Data B (the Original), which include the mean, the standard deviation, and the minimum and the maximum 

values for each of the six independent variables and the dependent variable are presented in Table 3.17 
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Table 3.17: Descriptive Statistics for Data B (the Original) 

Variable Count Mean Standard Deviation Minimum Maximum 

1BX  57 7.087719 4.128649 2 16 

2BX  57 9.631579 6.744393 2 30 

3BX  57 4.456141 2.315092 2 12 

4BX  57 4.456141 2.57786 2 12 

5BX  57 58.42105 31.51187 5 100 

BY  57 2.407526 2.506772 0.201 9.21 

3.2.1.2. Testing for the Normality Assumption on Data B (the Original) 

Data B (the Original) were tested for the normality assumption using the Anderson-Darling test, Shapiro-Wilk test and the d’ Agostino-

Pearson test. The results outputs of these tests are presented in Figure 4.3 and Table 3.18, respectively. 

 

 
Fig. 3.3: The Anderson-Darling Test for the Normality Assumption on Data B (the Original). 

 
Table 3.18: Shapiro-Wilk Test and d Agostino-Pearson Test for Normality Assumption on Data B (the Original) 

Shapiro-Wilk Test  D Agostino-Pearson Test 

W-stat 0.966699  DA-stat 1.76228 

P-value 0.117574  P-value 0.41431 
alpha 0.05  alpha 0.05 

Normal yes  Normal yes 

3.2.1.3. Testing for the heteroscedasticity assumption on data b (the original) 

Data B (the Original) were tested for the heteroscedasticity assumption using Breusch-Pagan test and White test for heteroscedasticity. The 

results outputs of this test are presented in Table 3.19. 

 
Table 3.19: Breusch-Pagan Test and White Test for Heteroscesdasticity Assumption on Data B (the Original) 

 Breusch-Pagan Test White Test 

LM stat 14.43118 7.522686 

df 5 2 

P-value 0.01309 0.023252 
   

F stat 3.457885 12.63782 

df1 5 2 
df2 51 54 

P-value 0.009114 0.021895 

3.2.1.4. Multiple linear regression analysis for data b (the original) 

The results outputs for the multiple linear regression analysis on Data B (the Original) are presented in Tables 3.20 to 3.22. 

 
Table 3.20: Regression Model Coefficients for Data B (the Original) 

Variable 
Unstandardized Coefficients Standardized Coefficients 

t-stat Sig. 
Correlations Collinearity Statistics 

B Std. Error Beta Zero-order Partial Part Tolerance VIF 

Intercept 3.979 .989  4.023 .000      

1BX  -.274 .061 -.451 -4.489 .000 -.326 -.532 -.420 .868 1.152 

2BX  .155 .037 .417 4.232 .000 .463 .510 .396 .905 1.105 

3BX  .279 .116 .258 2.400 .020 .300 .319 .225 .761 1.314 

4BX  -.482 .102 -.496 -4.724 .000 -.262 -.552 -.442 .796 1.256 

5BX  -.004 .008 -.046 -.490 .626 -.118 -.068 -.046 .975 1.026 
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Table 3.21: Model Summary for Data B (the Original) 

Multiple 

R 

R 

Square 

Adjusted R 

Square 

Std. Error of the Esti-

mate 

Change Statistics 
Durbin -Wat-

son 
R Square 

Change 

F 

Change 
df1 df2 

Sig. F 

Change 

.743 .553 .509 1.757 .553 12.604 5 51 .000 1.710 

 
Table 4.22: Additional Overall Fit of the Regression Model for Data B (the Original) 

 AIC 69.89669 
 AICc 72.1824 
 SBC 82.15499 

3.2.1.5. Multiple linear correlation analysis for data a (the original) 

The results outputs for the multiple linear correlation analysis on Data B (the Original) are presented in Table 3.23. 

 
Table 3.23: Correlations for Data B (the Original) 

 Variable BY  
1BX  

2BX  
3BX  

4BX  
5BX  

Correlations 

BY  1.000 -.326 .463 .300 -.262 -.118 

1BX  -.326 1.000 .063 -.240 -.321 -.037 

2BX  .463 .063 1.000 .266 -.006 -.073 

3BX  .300 -.240 .266 1.000 .365 -.105 

4BX  -.262 -.321 -.006 .365 1.000 .062 

5BX  -.118 -.037 -.073 -.105 .062 1.000 

3.2.2. Analyses on data b (now with heteroscedasticity remedied) 

The procedure of the Multiple Linear Regression Analysis is carried out on Data B which failed the heteroscedasticity assumption but is 

now corrected. The results outputs of the procedure are presented in Tables 3.24 to 3.30 and Figure 3.4. 

3.2.2.1. Descriptive statistics for data b (now with heteroscedasticity remedied) 

The descriptive statistics for Data B (Now with Heteroscedasticity Remedied), which include the mean, the standard deviation, and the 

minimum and the maximum values for each of the five independent variables and the dependent variable are presented in Table 3.24. 

 
Table 3.24: Descriptive Statistics for Data B (Now with Heteroscedasticity Remedied) 

Variable Count Mean Standard Deviation Minimum Maximum 

1BInX  57 1.77396 0.6380438 0.6931472 2.772589 

2BInX  57 2.05582 0.6520647 0.6931472 3.401197 

3BInX  57 1.36708 0.5081612 0.6931472 2.484907 

4BInX  57 1.360702 0.5008541 0.6931472 2.484907 

5BInX  57 3.805715 0.8916203 1.609438 4.60517 

BInY  57 0.3286631 1.116958 -1.60445 2.22029 

3.2.2.2. Testing for the normality assumption on data b (now with heteroscedasticity remedied) 

Data B (Now with Heteroscedasticity Remedied) were tested for the normality assumption using the Anderson-Darling test, Shapiro-Wilk 

test and the d’ Agostino-Pearson test. The results outputs of these tests are presented in Figure 3.4 and Table 3.25, respectively. 

 

 
Fig. 4.4: The Anderson-Darling Test for the Normality Assumption on Data B (Now with Heteroscedasticity Remedied). 

 
Table 3.25: Shapiro-Wilk Test and d Agostino-Pearson Test for Normality Assumption on Data B (Now with Heteroscedasticity Remedied) 

Shapiro-Wilk Test  D Agostino-Pearson Test 

W-stat 0.970997  DA-stat 0.772837 

P-value 0.186676  P-value 0.679486 

alpha 0.05  alpha 0.05 
Normal yes  Normal yes 
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3.2.2.3. Testing for heteroscedasticity assumption on data b (now with heteroscedasticity remedied) 

Data B (Now with Heteroscedasticity Remedied) were tested for the heteroscedasticity assumption using Breusch-Pagan test and White 

test for heteroscedasticity. The results outputs of this test are presented in Table 3.26. 

 
Table 3.26: Breusch-Pagan Test and White Test for Heteroscesdasticity Assumption on Data B (Now with Heteroscedasticity Remedied) 

 Breusch-Pagan Test White Test 

LM stat 8.690418 0.560865 
df 5 2 

P-value 0.122068 0.755457 
   

F stat 1.83488 0.268313 

df1 5 2 
df2 51 54 

P-value 0.122598 0.765682 

3.2.2.4. Multiple linear regression analysis for data b (now with heteroscedasticity remedied) 

The results outputs for the multiple linear regression analysis on Data B (Now with Heteroscedasticity Remedied) are presented in Tables 

3.27 to 3.29. 

 
Table 3.27: Regression Model Coefficients for Data B (Now with Heteroscedasticity Remedied) 

Variable 
Unstandardized Coefficients Standardized Coefficients 

t-stat Sig. 
Correlations Collinearity Statistics 

B Std. Error Beta Zero-order Partial Part Tolerance VIF 

Intercept .093 .703  .132 .896      

1BInX  -.844 .166 -.482 -5.080 .000 -.336 -.580 -.436 .820 1.220 

2BInX  .917 .169 .535 5.411 .000 .512 .604 .465 .754 1.326 

3BInX  .620 .255 .282 2.431 .019 .345 .322 .209 .548 1.824 

4BInX  -1.031 .230 -.462 -4.479 .000 -.185 -.531 -.385 .692 1.444 

5BInX  .106 .110 .085 .967 .338 .051 .134 .083 .962 1.039 

 
Table 3.28: Model Summary for Data B (Now with Heteroscedasticity Remedied) 

Multiple 

R 

R 

Square 

Adjusted R 

Square 

Std. Error of the Esti-

mate 

Change Statistics 
Durbin -Wat-

son 
R Square 

Change 

F 

Change 
df1 df2 

Sig. F 

Change 

.790 .624 .587 .718 .624 16.892 5 51 .000 1.781 

 
Table 3.29: Additional Overall Fit of the Regression Model for Data B (Now with Heteroscedasticity Remedied) 

 AIC -32.0801 
 AICc -29.7944 
 SBC -19.8218 

3.2.2.5. Multiple linear correlation analysis for data b (now with heteroscedasticity remedied) 

 

The results outputs for the multiple linear correlation analysis on Data B (Now with Heteroscedasticity Remedied) are presented in Table 

3.30. 

 
Table 3.30: Correlations for Data B (With Heteroscedasticity Remedied) 

 Variable BInY  
1BInX  

2BInX  
3BInX  

4BInX  
5BInX  

Correlations 

BInY  1.000 -.336 .512 .345 -.185 .051 

1BInX  -.336 1.000 .203 -.268 -.242 .014 

2BInX  .512 .203 1.000 .361 .045 -.071 

3BInX  .345 -.268 .361 1.000 .527 -.184 

4BInX  -.185 -.242 .045 .527 1.000 -.136 

5BInX  .051 .014 -.071 -.184 -.136 1.000 

4. Discussions on results from data analyses 

The results obtained in the multiple linear regression and correlation analyses of the hypothetical Data A and B are put up for discussions 

in this section. 

4.1. Discussions on the results of the analyses on data a (the original) 

Some of the descriptive statistics for Data A (the Original) are presented in Table 3.3, which include the count, mean, standard deviation, 

minimum and maximum values for each of the variables that are to be involved in the multiple linear regression and correlation analyses. 

The normality and heteroscedasticity assumptions were tested on Data A (the Original) prior to the conduction of the multiple linear 

regression and correlation analyses. 

The p-Values of the Anderson-Darling test (in Figure 3.1) and the Shapiro-Wilk and d’ Agostino-Pearson tests (both in Table 3.4) which 

are 0.050, 0.111069 and 0.147421, respectively, are all indicative that Data A (the Original) satisfied the normality assumption. Both the 
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Breusch-Pagan test and the White test (in Table 3.5) yielded p-Values of 0.00248 and 9.93E-0.5, respectively, which imply that Data A 

(the Original) failed the heteroscedasticity assumption. 

Despite Data A (the Original) failing the heteroscedasticity assumption, the multiple linear regression and correlation analyses were still 

carried out on the hypothetical Data A (the Original). The results outputs of the multiple linear regression and correlation analyses on Data 

A (the Original) are presented in Tables 3.6 to 3.9. 

From Table 3.6, the multiple linear regression model for Data A (the Original) is obtained as, 

 

1 2 3 4 5 6Ŷ 8.537 0.001 0.971 0.010 2.827 1.032A A A A A A AX X X X X X= − + −  + + + −                                                                       (4.1) 

 

It was evident, also, from Table 3.6 that all the independent variables except 
2AX  are significant as their p-Values are all less than the 

chosen level of significance,  =0.05. Also shown in Table 3.6 are the values of the Variance Inflation Factor (VIF) for all the six inde-

pendent variables are all less than the critical value, 10; which is an indication that the multicollinearity assumption was satisfied in Data 

A (the Original). 

From Table 3.7, the value of the computed Durban-Watson statistic of 1.931 (which is approximately equal to 2) implies that the autocor-

relation assumption was satisfied in Data A (the Original). Also, from Table 3.7, the computed F-statistic of 362.969 (a p-Value equivalent 

of about 0.000) led to the conclusion that the model is of good-fit to Data A (the Original); and the R-square value of 0.976 showed that 

about 97.6% of the total variation in the dependent variable, YA
, is being accounted for by the variations in the independent variables, 

1 2 3 4 5,  ,  ,  ,  A A A A AX X X X X  and 
6AX ; while about 2.4% is left unaccounted for perhaps by some other variables not included in the mod-

elling. 

The values of the R-square (=0.976) and Adjusted R-square (=0.974) in Table 3.7 indicate the level of adequacy of the established regres-

sion model for Data A (the Original). Also, the values of the AIC, AICc and SBC (=332.5929, 335.4165 and 347.2533, respectively) in 

Table 3.8 are additional indication of the overall fit for the same established regression model for Data A (the Original). 

The value of the Multiple R (=0.988) in the multiple linear regression analysis on Data A (the Original), presented in Table 3.7, showed 

that there was a strong positive correlation among the dependent variable, YA
, and the independent variables, 

1 2 3 4 5,  ,  ,  ,  A A A A AX X X X X  

and 
6AX . From the results outputs of the multiple linear correlation analysis on Data A (the Original), presented in Table 3.9, it was evident 

that the dependent variable, YA
, specifically has strong positive correlations with 

4 1,  A AX X  and 
5AX (in that order of magnitude); weak 

positive correlations with 
3AX  and 

6AX (in that order of magnitude); and no correlation at all with 
2AX . 

Finally, the predicted values of the dependent variable obtained using (4.1) are presented in Column 8 of Table 3.1 (see Appendix A). Also, 

Figure (4.1) presents the graph of these predicted values superimposed with the graph of the original values of the dependent variables (see 

Appendix C). 

4.2. Discussions on the results of the analyses on data a (now with heteroscedasticity remedied) 

The failure of the heteroscedasticity assumption in Data A (the Original) necessitated the correction or the remediation of the data for the 

presence of heteroscedasticity. The correction is done by employing the Log-transformation method (see Gujarati [7]) as expressed in (2.8); 

which in this case is given by, 

 

0 1 1 2 2 3 3 4 4 5 5 6 6YA A A A A A A A A A A A A A AIn InX InX InX InX InX InX e=  + + + + + + +                                                                (4.2) 

 

Going forward with the usual procedure, Table 3.10 presents some of the descriptive statistics for Data A (Now with Heteroscedasticity 

Remedied). The normality and heteroscedasticity assumptions were tested on Data A (Now with Heteroscedasticity Remedied) prior to the 

conduction of the multiple linear regression and correlation analyses. 

The p-Values of the Anderson-Darling test (in Figure 3.2) and the Shapiro-Wilk and d’ Agostino-Pearson tests (both in Table 3.11) which 

are 0.389, 0.262465 and 0.101031, respectively, are all indicative that Data A (Now with Heteroscedasticity Remedied) satisfied the nor-

mality assumption. Both the Breusch-Pagan test and the White test (in Table 3.12) yielded p-Values of 0.313389 and 0.243758, respec-

tively, which imply that Data A (Now with Heteroscedasticity Remedied) now satisfy the heteroscedasticity assumption. 

The multiple linear regression and correlation analyses are now carried out on Data A (Now with Heteroscedasticity Remedied), and the 

results outputs are presented in Tables 3.13 to 3.16. From Table 3.13, the multiple linear regression model for Data A (Now with Hetero-

scedasticity Remedied) is obtained as, 

 

1 2 3 4 5 6
Ŷ 5.658 0.319 1.226 0.707 0.384 0.978

A A A A A A A
In InX InX InX InX InX InX= − + − + + + −                                                 (4.3) 

 

It was evident, also, from Table 3.13 that all the independent variables are significant as their p-Values are all less than the chosen level of 

significance,  =0.05. Also shown in Table 3.13 are the values of the Variance Inflation Factor (VIF) for all the six independent variables 

are all less than the critical value, 10; which is an indication that the multicollinearity assumption was satisfied in Data A (Now with 

Heteroscedasticity Remedied). 

From Table 3.14, the value of the computed Durban-Watson statistic of 1.791 (which is approximately equal to 2) implies that the auto-

correlation assumption was satisfied in Data A (Now with Heteroscedasticity Remedied). Also, the computed F-statistic of 623.148 (a p-

Value equivalent of about 0.000) led to the conclusion that the model is of good-fit to Data A (Now with Heteroscedasticity Remedied); 

and the R-square value of 0.986 showed that about 98.6% of the total variation in the dependent variable, YAIn , is being accounted for by 

the variations in the independent variables, 
1 2 3 4 5,  ,  ,  ,  A A A A AInX InX InX InX InX  and 

6AInX ; while about 1.4% is left unaccounted for 

perhaps by some other variables not included in the modelling. 

The values of the R-square (=0.986) and Adjusted R-square (=0.984) in Table 3.14 indicate the level of adequacy of the established regres-

sion model for Data A (Now with Heteroscedasticity Remedied). Also, the values of the AIC, AICc and SBC (= -135.021, -132.198 and -
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120.361, respectively) in Table 3.15 are additional indication of the overall fit for the same established regression model for Data A (Now 

with Heteroscedasticity Remedied). 

The value of the Multiple R (=0.993) in the multiple linear regression analysis on Data A (Now with Heteroscedasticity Remedied), pre-

sented in Table 3.14, showed that there was a very strong positive correlation among the dependent variable, YAIn , and the independent 

variables, 
1 2 3 4 5,  ,  ,  ,  A A A A AInX InX InX InX InX  and 

6AInX . From the results outputs of the multiple linear correlation analysis on Data A 

(Now with Heteroscedasticity Remedied), presented in Table 3.16, it was evident that the dependent variable, YAIn , specifically has strong 

positive correlations with 
4 1,  A AInX InX  and 

3AInX (in that order of magnitude); average positive correlation with 
5AInX ; weak positive 

correlation with 
2AInX ; and no correlation at all with 

6AInX . 

Finally, the predicted values of the dependent variable obtained using (4.3) as well as their reversed-transformed values are, respectively, 

presented in Columns 9 and 10 of Table 3.1 (see Appendix A). Also, Figure (4.2) presents the graph of these reversed-transformed (sup-

posed real) predicted values superimposed with the graph of the original values of the dependent variables (see Appendix C). 

4.3. Discussions on the results of the analyses on data b (the original) 

The count, mean, standard deviation, minimum and maximum values of each of the variables in Data B (the Original) that are to be included 

in the multiple linear regression and correlation analyses are presented in Table 3.17. Also, the normality and heteroscedasticity assump-

tions were tested on Data A (Now with Heteroscedasticity Remedied) prior to the conduction of the multiple linear regression and corre-

lation analyses. The p-Values of the Anderson-Darling test (in Figure 3.3) and the Shapiro-Wilk and d’ Agostino-Pearson tests (both in 

Table 3.18) which are 0.071, 0.117574 and 0.41431, respectively, are all indicative that Data B (the Original) satisfied the normality 

assumption. Both the Breusch-Pagan test and the White test (in Table 3.19) yielded p-Values of 0.01309 and 0.023252, respectively, which 

imply that Data B (the Original) failed the heteroscedasticity assumption. 

Although the test for the heteroscedasticity assumption failed, the multiple linear regression and correlation analyses were still carried out 

on the hypothetical Data B (the Original). The results outputs of the multiple linear regression and correlation analyses on Data B (the 

Original) are presented in Tables 3.20 to 3.23. From Table 3.20, the multiple linear regression model for Data B (the Original) is obtained 

as, 

 

1 2 3 4 5Ŷ 3.979 0.274 0.279 0.482 0.004B B B B B BX X X X X= − +  + − −                                                                                           (4.4) 

 

It was evident, also, from Table 3.20 that all the independent variables except 
5BX  are significant as their p-Values are all less than the 

chosen level of significance,  =0.05. Also shown in Table 3.20 are the values of the Variance Inflation Factor (VIF) for all the five 

independent variables are all less than the critical value, 10; which is an indication that the multicollinearity assumption was satisfied in 

Data B (the Original). 

From Table 3.21, the value of the computed Durban-Watson statistic of 1.710 (which is approximately equal to 2) implies that the auto-

correlation assumption was satisfied in Data B (the Original). Also, from Table 3.21, the computed F-statistic of 12.604 (a p-Value equiv-

alent of about 0.000) led to the conclusion that the model is of good-fit to Data B (the Original); and the R-square value of 0.553 showed 

that about 55.3% of the total variation in the dependent variable, YB
, is being accounted for by the variations in the independent variables, 

1 2 3 4,  ,  ,  B B B BX X X X  and 
5BX ; while about 22.7% is left unaccounted for perhaps by some other variables not included in the modelling. 

The values of the R-square (=0.553) and Adjusted R-square (=0.509) in Table 3.21 indicate the level of adequacy of the established regres-

sion model for Data B (the Original). Also, the values of the AIC, AICc and SBC (=69.89669, 72.1824 and 82.15499, respectively) in 

Table 3.22 are additional indication of the overall fit for the same established regression model for Data B (the Original). 

The value of the Multiple R (=0.743) in the multiple linear regression analysis on Data A (Now with Heteroscedasticity Remedied), pre-

sented in Table 3.21, showed that there was a positive correlation among the dependent variable, YB
, and the independent variables, 

1 2 3 4,  ,  ,  B B B BX X X X  and 
5BX . From the results outputs of the multiple linear correlation analysis on Data B (the Original), presented in 

Table 3.23, it was evident that the dependent variable, YB
, specifically has an average positive correlation with 

2BX ; weak positive corre-

lation with 3BX ; and weak negative correlations with 
1 4,  B BX X  and 

5BX  (in that order of magnitude). 

Finally, the predicted values of the dependent variable obtained using (4.4) are presented in Column 7 of Table 3.2 (see Appendix B). Also, 

Figure (4.3) presents the graph of these predicted values superimposed with the graph of the original values of the dependent variables (see 

Appendix C). 

4.4. Discussions on the results of the analyses on data b (now with heteroscedasticity remedied) 

The failure of the heteroscedasticity assumption in Data B (the Original) necessitated the correction or the remediation of the data for the 

presence of heteroscedasticity. The correction is done by employing the Log-transformation method (see Gujarati [7]) as expressed in (2.8); 

which in this case is given by, 

 

0 1 1 2 2 3 3 4 4 5 5YB B B B B B B B B B B B BIn InX InX InX InX InX e=  + + + + + +                                                                                     (4.5) 

 

Going forward with the usual procedure, Table 3.24 presents some of the descriptive statistics for Data B (Now with Heteroscedasticity 

Remedied). The normality and heteroscedasticity assumptions were tested on Data B (Now with Heteroscedasticity Remedied) prior to the 

conduction of the multiple linear regression and correlation analyses. The p-Values of the Anderson-Darling test (in Figure 3.4) and the 

Shapiro-Wilk and d’ Agostino-Pearson tests (both in Table 3.25) which are 0.091, 0.186676 and 0.679486, respectively, are all indicative 

that Data B (Now with Heteroscedasticity Remedied) satisfied the normality assumption. Both the Breusch-Pagan test and the White test 

(in Table 3.26) yielded p-Values of 0.122068 and 0.755457, respectively, which imply that Data B (Now with Heteroscedasticity Reme-

died) now satisfy the heteroscedasticity assumption. 
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The multiple linear regression and correlation analyses are now carried out on Data B (Now with Heteroscedasticity Remedied), and the 

results outputs are presented in Tables 3.27 to 3.30. From Table 3.27, the multiple linear regression model for Data B (Now with Hetero-

scedasticity Remedied) is obtained as, 

 

1 2 3 4 5Ŷ 0.093 0.844 0.620 1.031 0.106B B B B B BIn InX InX InX InX InX= − +  + − +                                                                      (4.6) 

 

It was evident, also, from Table 3.27 that all the independent variables except 5BInX  are significant as their p-Values are all less than the 

chosen level of significance,  =0.05. Also shown in Table 3.27 are the values of the Variance Inflation Factor (VIF) for all the five 

independent variables are all less than the critical value, 10; which is an indication that the multicollinearity assumption was satisfied in 

Data B (Now with Heteroscedasticity Remedied). 

From Table 3.28, the value of the computed Durban-Watson statistic of 1.781 (which is approximately equal to 2) implies that the auto-

correlation assumption was satisfied in Data B (Now with Heteroscedasticity Remedied). Also, from Table 3.28, the computed F-statistic 

of 16.892 (a p-Value equivalent of about 0.000) led to the conclusion that the model is of good-fit to Data B (Now with Heteroscedasticity 

Remedied); and the R-square value of 0.624 showed that about 62.4% of the total variation in the dependent variable, YBIn , is being 

accounted for by the variations in the independent variables, 
1 2 3 4,  ,  ,  B B B BInX InX InX InX  and 

5BInX ; while about 37.6% is left unac-

counted for perhaps by some other variables not included in the modelling. 

The values of the R-square (=0.624) and Adjusted R-square (=0.587) in Table 3.28 indicate the level of adequacy of the established regres-

sion model for Data B (Now with Heteroscedasticity Remedied). Also, the values of the AIC, AICc and SBC (= -32.0801, =29.7944 and -

19.8218, respectively) in Table 3.29 are additional indication of the overall fit for the same established regression model for Data B (Now 

with Heteroscedasticity Remedied). 

The value of the Multiple R (=0.790) in the multiple linear regression analysis on Data B (Now with Heteroscedasticity Remedied), pre-

sented in Table 4.28, showed that there was a strong positive correlation among the dependent variable, YBIn , and the independent varia-

bles, 
1 2 3 4,  ,  ,  B B B BInX InX InX InX  and 

5BInX . From the results outputs of the multiple linear correlation analysis on Data B (Now with 

Heteroscedasticity Remedied), presented in Table 3.30, it was evident that the dependent variable, YBIn , specifically has an average 

positive correlation with 
2BInX ; weak positive correlation with 

3BInX ; weak negative correlations with
 1BInX  and 

4BInX (in that order 

of magnitude); and no correlation at all with 
5BInX . 

Finally, the predicted values of the dependent variable obtained using (4.6) as well as their reversed-transformed values are, respectively, 

presented in Columns 8 and 9 of Table 3.2 (see Appendix B). Also, Figure (4.4) presents the graph of these reversed-transformed (supposed 

real) predicted values superimposed with the graph of the original values of the dependent variables (see Appendix C). 

5. Conclusion 

The very essence of correcting for (otherwise referred to as “ remedying” ) the presence of heteroscedasticity, where it exists, in regression 

modelling has been demonstrated in this study. In order to illustrate this expression, this study employed two different hypothetical data; 

namely, Data A (the Original) and Data B (the Original). The two datasets satisfied the normality, multicollinearity and autocorrelation 

assumptions, but could not satisfy the homoscedasticity assumption (that is, the existences of heteroscedasticity were established in the 

two datasets). 

The Ordinary Least Square (OLS) method was used to estimate the multiple linear regression models for Data A (the Original) and Data 

B (the Original); which are presented in (4.1) and (4.3), respectively. The model established for Data A (the Original) is seen to be statis-

tically significant (that is of good fit) with an R-square value of 0.976, an AIC value of 332.5929, and an SBC value of 347.2533. In a 

likely manner, the model established for Data B (the Original) is also statistically significant with an R-square value of 0.553, an AIC value 

of 69.89669, and an SBC value of 82.15499. 

The Log-transformation was applied on the variables in the two different datasets (Data A (the Original) and Data B (the Original)) that 

showed the existences of heteroscedasticity. These transformations gave rise to new sets of data now referred to as, Data A (Now with 

Heteroscedasticity Remedied) and Data B (Now with Heteroscedasticity Remedied). These Log-transformed datasets equally satisfied the 

normality, multicollinearity and autocorrelation assumptions, and also satisfy the homoscedasticity assumption (that is, there are no exist-

ences of heteroscedasticity in the two datasets). 

The estimated multiple linear regression models for Data A (Now with Heteroscedasticity Remedied) and Data B (Now with Heterosce-

dasticity Remedied) are as presented in (4.2) and (4.4), respectively. The model established for Data A (Now with Heteroscedasticity 

Remedied) is seen to be statistically significant (that is of good fit) with an R-square value of 0.986, an AIC value of -135.021, and an SBC 

value of -120.361. In a likely manner, the model established for Data B (Now with Heteroscedasticity Remedied) is also statistically 

significant with an R-square value of 0.624, an AIC value of -32.0801, and an SBC value of -19.8218. 

The values of the R-square for Data A (Now with Heteroscedasticity Remedied) and Data B (Now with Heteroscedasticity Remedied) are, 

respectively, greater than the values of the R-square for Data A (the Original) and Data B (the Original). It could be seen that 0.986>0.976 

and 0.624>0.553. Also, the values of the AIC and SBC for Data A (Now with Heteroscedasticity Remedied) and Data B (Now with 

Heteroscedasticity Remedied) are, respectively, lesser than the values of the AIC and SBC for Data A (the Original) and Data B (the 

Original). It could also be seen that -135.021<332.5929; -120.361<347.2533 and -32.0801<69.89669; -19.8218<82.15499. 

Now, from the points of view of the values of the R-square, AIC and SBC, it is evident that the estimated regression models for Data A 

(Now with Heteroscedasticity Remedied) and Data B (Now with Heteroscedasticity Remedied) are better models when compared to the 

regression models for Data A (the Original) and Data B (the Original). 
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Appendix B 

 

Table 3.2: The Hypothetical Data B 

BY  
1BX  

2BX  
3BX  

4BX  
5BX  ˆ

BY  ˆ
BInY

 
ˆExp. ( )BInY  

0.787 3 3 3 3 5 2.993 -0.107730 0.897870 

0.293 8 30 8 8 5 4.793 0.772799 2.165821 

1.710 3 6 6 6 5 2.849 0.243002 1.275071 
0.203 4 4 4 12 5 -1.185 -1.337640 0.262465 

0.806 8 7 6 5 5 2.116 -0.255490 0.774538 

4.713 10 20 5 5 5 3.304 0.405826 1.500542 
0.607 8 6 3 3 25 2.008 -0.129330 0.878680 

9.107 6 24 4 4 25 5.143 1.266464 3.548284 
9.210 4 10 12 4 25 5.753 1.487012 4.423855 

1.365 16 12 8 4 25 1.659 0.232780 1.262103 

4.554 3 10 8 8 25 2.983 0.763792 2.146400 
0.293 8 3 3 3 25 1.543 -0.764950 0.465357 

2.252 3 6 3 3 50 3.278 0.771959 2.164002 

9.167 3 8 8 3 50 4.983 1.643878 5.175200 
0.694 4 8 4 8 50 1.183 -0.039910 0.960874 

0.379 5 2 2 2 50 2.313 -0.499960 0.606556 

0.485 2 2 2 3 50 2.653 -0.144640 0.865330 
3.345 10 15 3 3 50 2.755 0.596045 1.814927 

0.208 15 6 2 3 50 -0.289 -0.837790 0.432664 

0.201 15 6 2 3 75 -0.389 -0.794820 0.451665 
0.329 10 4 3 3 75 0.95 -0.573030 0.563817 

4.966 3 8 2 2 75 3.691 1.245389 3.474287 

1.362 6 6 6 4 75 2.711 0.363074 1.437742 
1.515 2 3 8 6 75 2.936 0.415015 1.514393 

0.751 5 2 2 2 75 2.213 -0.456980 0.633193 

1.568 4 8 4 8 100 0.983 0.033562 1.034131 
1.203 2 4 4 12 100 -1.017 -0.435070 0.647218 

0.806 9 7 6 5 100 1.462 -0.037350 0.963339 

2.613 8 24 5 5 100 4.092 1.078896 2.941430 
3.972 9 6 3 3 100 1.434 -0.081800 0.921460 

7.107 4 28 4 2 100 6.975 2.611615 13.621030 

6.213 2 10 6 2 100 5.291 2.503858 12.229590 
0.694 2 10 4 8 50 2.041 0.749727 2.116422 

1.379 9 13 2 2 50 2.922 0.720392 2.055239 

2.485 6 8 2 3 50 2.487 0.199359 1.220620 
3.345 13 9 3 3 50 1.003 -0.093820 0.910449 

1.208 10 8 2 3 50 1.391 -0.231780 0.793123 

0.401 16 9 2 3 75 -0.198 -0.477470 0.620348 
2.329 9 6 3 3 75 1.534 -0.112290 0.893785 

3.966 5 9 2 2 75 3.298 0.922260 2.514967 

1.362 7 12 6 4 75 3.367 0.868586 2.383539 
2.515 3 11 8 6 75 3.902 1.264245 3.540418 

0.751 4 7 8 8 75 2.044 0.310370 1.363930 

0.787 6 6 3 3 100 2.256 0.260417 1.297471 
1.293 8 21 8 8 100 3.018 0.763276 2.145293 

1.568 6 6 6 6 100 1.647 -0.024470 0.975830 

1.203 2 4 4 12 100 -1.017 -0.435070 0.647218 
0.806 9 7 6 5 100 1.462 -0.037350 0.963339 

3.613 8 20 5 5 100 3.472 0.911707 2.488567 

3.972 9 6 3 3 25 1.734 -0.228740 0.795533 
8.107 4 26 4 2 25 6.965 2.396711 10.986980 

7.213 2 10 6 2 25 5.591 2.356911 10.558290 

1.365 14 12 8 4 25 2.207 0.345480 1.412668 
3.345 10 15 3 3 50 2.755 0.596045 1.814927 

0.208 15 6 2 3 50 -0.289 -0.837790 0.432664 

0.201 15 6 2 3 75 -0.389 -0.794820 0.451665 
0.329 10 4 3 3 75 0.950 -0.573030 0.563817 

0.787 3 3 3 3 5 2.993 -0.107730 0.897870 
0.293 8 30 8 8 5 4.793 0.772799 2.165821 

1.710 3 6 6 6 5 2.849 0.243002 1.275071 

Appendix C 

Plots of the Y Values of the Hypothetical Data, their Predicted Y Values and the Predicted Y Values of the  

Hypothetical Data (Now with Heteroscedasticity Remedied) 
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Fig.4.1: Plots of Y Values and the Predicted Y Values for Data A (the Original). 

 

 
Fig. 4.2: Plots of Y Values for Data A (the Original) and the Predicted Y Values for Data A (Now with Heteroscedasticity Remedied). 

 

 
Fig. 4.3: Plots of Y Values and the Predicted Y Values for Data B (the Original). 

 

 
Fig.4.4: Plots of Y Values for Data A (the Original) and the Predicted Y Values for Data A (Now with Heteroscedasticity Remedied). 
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