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Abstract 
 

Medical research is one of the most important aspects of statistical analysis and application. In this paper, present a new three-parameter 

continuous distribution referred to as power exponentiated Shanker distributions with application to real-life datasets. The proposed distri-

bution possesses a density function, a distribution function with three parameters, a survival function, and a hazard function. They studied 

the nature of the distribution with the help of its statistical properties, including moments, moment-generating functions, and entropy. The 

probability density function of order statistics for this distribution is also obtained. The classical distribution is the estimation of parameters 

by using the technique of maximum likelihood estimation. The application of the model selection technique criteria AIC, BIC, AICC, and 

goodness of fit on two real data sets is finally presented and compared to the fit attained by some other well-known distributions. 

 
Keywords: Entropy; Moments; Maximum Likelihood Estimation; Order Statistics; Power Exponentiated. 

 

1. Introduction 

Medical research is mostly interested in studying the survival of cancer patients, as applied to statistical research. The statistical distribu-

tions have been extensively utilized for analyzing time-to-event data, also referred to as survival or reliability data, in different areas of 

applicability, including medical science. In recent years, an impressive set of new statistical distributions has been explored by statisticians. 

The necessity of developing an extended class of classical distribution is analysis, biomedicine, reliability, insurance, and finance. Recently, 

many researchers have been working on this area and have proposed new methods to develop improved probability distributions with 

utility. A new family of distribution, namely the exponentiated exponential distribution was introduced by Gupta et al. [4]. Gupta and 

Kundu [3] the family have two parameters (scale and shape) of the Weibull or gamma family; properties of the distribution were studied. 

Mud Holkar and Srivastava [7] introduced by exponentiated Weibull family of the distribution. Pal et al. [9] discussed by exponentiated 

Weibull distribution has been compared with the two parameter Weibull and gamma distribution with respect to failure rate. Samir et. al 

[1] the exponentiated power Lindley distribution, the distribution is containing as special-sub models some widely well-known distribution. 

Chrisogonus keleeh onyekwere [8] the author discussed by exponentiated Rama distribution properties and application. Rajitha and Vaish-

navi. [11]. Power Exponentiated Weibull Distribution: Application in Survival Rate of Cancer Patients. New techniques for extending life-

time distribution have piqued the curiosity of researchers. Kanak Modi [6] introduced a new method that adds two shape parameters β, v >
0 to an arbitrary base line distribution called the power exponentiated family of continuous distributions. With a cumulative distribution 

(cdf) defined as 

 

F(x) =
v(G(x))

β
−1

v−1
                                                                                                                                                                                             (1) 

 

And the probability distribution function (pdf) defined as  

 

f(x) =
βv(G(x))

β
ln v(G(x))

β−1
g(x)

v−1
  

 

Where X is a continuous random variable whose baseline (cdf) is G(x, θ) a vector of parameter (θ). 
Rama Shanker [10] introduced the shanker distribution with properties and its application. The proposed distribution can be obtained by 

assuming G(x) the shanker distribution with shape parameters θ > 0. Thuse, the cdf and probability density function (pdf) of the shanker 

distribution are obtained. 

G(x) = 1 −
(θ2+1)+θx e−θx

θ2+1
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g(x) =
θ2

θ2+1
(θ + x)e−θx  

 

The proposed distribution describes the survival time by analyzing some cancer patients. Additionally, another objective is to estimate the 

unknown model parameters using a maximum likelihood estimator. In this paper, we adopt the idea of a proposing a new three-parameter 

distribution. The proposed distribution, such as the power exponentiated shanker distribution, is also shown over the other well-known 

classical distributions.  

The present paper is organized, as a in section 2, derive the pdf and cdf of the proposed distribution. In section 3, discusses in reliability 

analysis of (PES) distribution. In section, 4 some of the statistical properties of the proposed distribution are discussed. In section 5, 

hormonic mean are derived. In section 6, derive the mean deviation. Also derive mean deviation from median, In section 7. In section 8, 

explore the limiting distribution of order statistics. In section 9, likelihood ratio test has been derived. In section 10, Bonferroni and Lorene 

curves are obtained. Entropies are derived in section 11. The maximum likelihood estimators of the model parameter are derived in section 

12. Finally, different application of the (PES) distribution on two real data sets are presented in section 13. All computations throughout 

this paper were performed using the statistical programing language R. 

1.1. Power exponentiated family 

The power exponentiated family of probability distributions to life time model. The cdf F(x) and pdf f(x) of power exponentiated family 

is given by 

 

F(x) =
v(G(x))

β
−1

v−1
                                                                                                                                                                                             (1) 

 

And 

 

f(x) =
βv(G(x))

β
ln v((Gx))

β−1
g(x)

v−1
 , x > 0, v > 0, β > 0                                                                                                                                     (2) 

1.2. Shanker distribution 

The shanker distribution is well-known distribution and its importance in study  

A continuous random variable X has Shanker distribution, if its cdf G(x) and pdf g(x) is given by 

 

G(x) = 1 −
(θ2+1)+θx e−θx

θ2+1
                                                                                                                                                                              (3) 

 

g(x) =
θ2

θ2+1
(θ + x)e−θx                                                                                                                                                                                (4) 

2. Power exponentiated shanker distribution 

The power exponentiated family using cdf and pdf defined in (3) and (4) respectively, we proposed a new power exponentiated shanker 

distribution. Thus, the power exponentiated shanker distribution with β and v as shape parameters and θ as scale parameter, we have ob-

tained 

The pdf of Power Exponentiated Shanker Distribution (PESD) is given by 

 

F(x) =
v
(1−

(θ2+1)+θx e−θx

θ2+1
)

β

−1

v−1
                                                                                                                                                                            (5) 

 

f(x) =
βv

(1−
(θ2+1)+θx e−θx

θ2+1
)

β

ln v(1−
(θ2+1)+θx e−θx

θ2+1
)
β−1

θ2

θ2+1
(θ+x)e−θx

v−1
, x > 0, β, v > 0, and θ > 0  

 

f(x) =
β θ2 ln v

(v−1)(θ2+1)
∑

(ln v)i

i!
(1 −

(θ2+1)+θx e−θx

θ2+1
)
βi+β−1

∞
i=0 (θ + x)e−θx                                                                                                         (6) 

 

Then, using the following power series expansion is defined as 

 

an = ∑
(x ln a)i

i!

∞
i=0                                                                                                                                                                                             (7) 

 

Where, a and x are any real numbers. 

 

Then, the binomial series expansion, is defined as  

 

(1 − z)a = ∑ (−1)j∞
j=0 (

a
j) z

j                                                                                                                                                                        (8) 

 

If z is a positive real non-integer. 

(a + b)z = ∑ (
z
k
) ak∞

k=0 b−k  
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For n, a positive integer. 

 

(1 + x)k = ∑ (
k
l
) xl∞

l=0   

3. Reliability analysis 

In this section, we will discuss the reliability function, hazard function, reverse hazard function, cumulative hazard function, Odds rate, 

Mills ratio and, Mean Residual function for the proposed (PES) distribution. 

3.1. Survival function 

The survival function of Power Exponentiated Shanker (PES) distribution is obtained as 

 

S(x) = 1 − F(x)  
 

S(x) = 1 −
v
(1−

(θ2+1)+θx e−θx

θ2+1
)

β

−1

v−1
  

 

S(x) = (
v−v

(1−
(θ2+1)+θx e−θx

θ2+1
)

β

v−1
)  

3.2. Hazard rate function 

The hazard rate function of power Exponentiated Shanker distribution is given by h(x) =
f(x)

1−F(x)
 is an important measure for characterizing 

life phenomenon. 

 

h(x) =

(

 
 

βθ2

(θ2+1)
v
(1−

(θ2+1)+θx e−θx

θ2+1
)

β

ln v(1−
(θ2+1)+θx e−θx

θ2+1
)
β−1

(θ+x)e−θx

v−v
(1−

(θ2+1)+θx e−θx

θ2+1
)

β

)

 
 

  

3.3. Revers hazard rate 

The Revers hazard rate of (PES) distribution is obtained as 

 

hr(x) =
f(x)

F(x)
  

 

hr(x) = (
β θ2 ln v∑

(lnv)i

i!
(1−

(θ2+1)+θx e−θx

θ2+1
)
βi+β−1

∞
i=0 (θ+x)e−θx

(θ2+1) v
(1−

(θ2+1)+θx e−θx

θ2+1
)

β

−1

)  

3.4. Cumulative hazard function 

The Cumulative hazard function of (PES) distribution is obtained as 

 

H(x) = − ln(1 − F(x))  
 

H(x) = − ln(
v−v

(1−
(θ2+1)+θx e−θx

θ2+1
)

β

v−1
)  

3.5. Odds rate function 

The Odds rate function of (PES) distribution is obtained as 

 

O(x) =
F(x)

1−F(x)
  

 

O(x) = (
v
(1−

(θ2+1)+θx e−θx

θ2+1
)

β

−1

v−v
(1−

(θ2+1)+θx e−θx

θ2+1
)

β)  
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3.6. Mean residual function 

The mean residual function of (PES) distribution is obtained as 

 

M(x) =
1

S(x)
∫ t f(t)dt − x
∞

x
  

 

M(x) =
1

S(x)
∫ t 

β θ2 ln v

(v−1)(θ2+1)
∑

(ln v)i

i!
(1 −

(θ2+1)+θt e−θt

θ2+1
)
βi+β−1

∞
i=0

∞

x
(θ + t)e−θtdt − x  

 

Then, the following binomial series expansion equation (8), and simplify the expression is   

 

M(x) =
β θ2l ln v

(v−1)(θ2+1)j+1
∑ ∑ ∑ ∑

(−1)j (ln v)i

i!
(
βi + β − 1

j
) (
j
k
) (
j − k
l
)∞

l=0
∞
k=0

∞
j=0

∞
i=0  ∫ tk+1

∞

x
(θ + t)e−θt(j+1) dt  

 

Let, assuming u =  e−θx(j+t+1) then the mean residual function is given by 

Then, solving the integral also obtained as, 

Upper incomplete gamma function is defined as 

 

Γ(s, x) = ∫ ts−1 e−t dt
∞

x
  

 

M(x) =
β θ2l ln v

v−v
(1−

(θ2+1)+θx e−θx

θ2+1
)

β

(θ2+1)j+1

∑ ∑ ∑ ∑
(−1)j (ln v)i

i!
(
βi + β − 1

j
) (
j
k
) (
j − k
l
)∞

l=0
∞
k=0

∞
j=0

∞
i=0 (

θ2(j+1)Γ(k+2,θx(j+1))+Γ(k+3,θx(j+1))

θ(j+1)k+3
) − x  

4. Statistical properties 

In this section, we derived the structural properties, the moment generating function, Characteristic function and rth moment for the (PES) 

distribution of the random variable is also derived. Including, the mean and variance investigated.  

4.1. Moments 

If a random variable X has the pdf of power exponentiated shanker distribution, then the corresponding rth is given  

 

E(Xr) = μr
′ = ∫ xr 

∞

0
f(x) dx  

 

μr
′ = ∫ xr

β θ2 ln v

(v−1)(θ2+1)
∑

(ln v)i

i!
(1 −

(θ2+1)+θx e−θx

θ2+1
)
βi+β−1

∞
i=0

∞

0
(θ + x)e−θxdx                                                                                              (9) 

 

Using the following binomial series expansion equation (8), and simplify the expression.   

 

μr
′ =

β θ2 ln v

(v−1)(θ2+1)j+1
∑ ∑ ∑ ∑

(−1)j (ln v)i

i!
(
βi + β − 1

j
) (
j
k
) (
k
l
)∞

l=0
∞
k=0

∞
j=0

∞
i=0  ∫ xr+k

∞

0
(θ + x) e−θx(j+1) dx  

 

To, solving the integral also obtained as 

 

μr
′ =

β θ2l ln v

(v−1)(θ2+1)j+1
∑ ∑ ∑ ∑

(−1)j (ln v)i

i!
(
βi + β − 1

j
) (
j
k
) (
k
l
)∞

l=0
∞
k=0

∞
j=0

∞
i=0

θ2(j+1)Γ(r+k+1)+Γ(r+k+2)

θr(j+1)r+k+2
                                                           (10) 

 

Where Γ(. ) is the gamma function. Subsequently, the mean and variance of (PES) distribution is obtained as substituting r = 1,2 in equa-

tion (10) 

 

μ1
′ =

β θ2l ln v

(v−1)(θ2+1)j+1
∑ ∑ ∑ ∑

(−1)j (ln v)i

i!
(
βi + β − 1

j
) (
j
k
) (
k
l
)∞

l=0
∞
k=0

∞
j=0

∞
i=0

θ2(j+1)Γ(k+2)+Γ(k+3)

θ(j+1)k+3
  

 

μ2
′ =

β θ2l ln v

(v−1)(θ2+1)j+1
∑ ∑ ∑ ∑

(−1)j (ln v)i

i!
(
βi + β − 1

j
) (
j
k
) (
k
l
)∞

l=0
∞
k=0

∞
j=0

∞
i=0

θ2(j+1)Γ(k+3)+Γ(k+4)

θ2(j+1)k+4
  

4.2. Moment generating function and characteristic function 

If a random variable X has the power exponentiated shanker distribution pdf is given then the corresponding rth moments is obtained as  

 

MX(t) = E(e
tx) = ∫ etx 

∞

0
f(x) dx  

 

MX(t) = ∫ etx
β θ2 ln v

(v−1)(θ2+1)
∑

(ln v)i

i!
(1 −

(θ2+1)+θx e−θx

θ2+1
)
βi+β−1

∞
i=0

∞

0
(θ + x)e−θxdx  

 

Then, using the following binomial series expansion equation (8), and simplify the expression   
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MX(t) =
β θk+2+2l ln v

(v−1)(θ2+1)j+1
∑ ∑ ∑ ∑

(−1)j (ln v)i

i!
(
βi + β − 1

j
) (
j
k
) (
j − k
l
)∞

l=0
∞
k=0

∞
j=0

∞
i=0  ∫ xk(θ + x) e−θx(j+t+1) dx

∞

0
  

 

Let, assuming u =  e−θx(j+t+1) then the corresponding rth moments are given by 

Solving the integral also obtained as 

 

MX(t) =
β θ2l ln v

(v−1)(θ2+1)j+1
∑ ∑ ∑ ∑

(−1)j (ln v)i

i!
(
βi + β − 1

j
) (
j
k
) (
j − k
l
)∞

l=0
∞
k=0

∞
j=0

∞
i=0

θ2(j+t+1)Γ(k+1)+Γ(k+2)

θ(j+t+1)k+2
  

 

Similarly, the characteristic function of (PES) distribution can be obtained as 

 

ϕX(t) = MX(e
itx)  

 

ϕX(t) =
β θ2l ln v

(v−1)(θ2+1)j+1
∑ ∑ ∑ ∑

(−1)j (ln v)i

i!
(
βi + β − 1

j
) (
j
k
) (
j − k
l
)∞

l=0
∞
k=0

∞
j=0

∞
i=0

θ2(j+it+1)Γ(k+1)+Γ(k+2)

θ(j+it+1)k+2
  

5. Hormonic mean 

The Hormonic mean of the (PES) distribution is defined as 

 

H.M = ∫
1

x

∞

0
f(x)dx  

 

H.M = ∫
1

x
 
β θ2 ln v

(v−1)(θ2+1)
∑

(ln v)i

i!
(1 −

(θ2+1)+θx e−θx

θ2+1
)
βi+β−1

∞
i=0 (θ + x)e−θx

∞

0
dx   

 

Then, using substation method u =  e−θx(j+1) then the hormonic mean is given by 

 

H.M =
β θk+2l+2 ln v

(v−1)(θ2+1)j+1
∑ ∑ ∑ ∑

(−1)j (ln v)i

i!
(
βi + β − 1

j
) (
j
k
) (
j − k
l
)∞

l=0
∞
k=0

∞
j=0

∞
i=0  ∫ xk−1

∞

0
(θ + x)e−θx(j+1) dx  

 

To solving the integral also obtained as 

 

H.M =
β θ2l+2 ln v

(v−1)(θ2+1)j+1
∑ ∑ ∑ ∑

(−1)j (ln v)i

i!
(
βi + β − 1

j
) (
j
k
) (
j − k
l
)∞

l=0
∞
k=0

∞
j=0

∞
i=0  

θ2(j+1)Γ(k)+Γ(k+1)

θ(j+1)k+1
  

6. Mean deviation 

Let X be a random variable from (PES) distribution with mean μ. Then the deviation from mean is defined as 

 

D(μ) = E(|X − μ|)  
 

D(μ) = ∫ |X − μ|
∞

0
 f(x)dx  

 

D(μ) = ∫ (μ − x)f(x)dx + ∫ (x − μ)f(x)dx
∞

μ

μ

0
  

 

D(μ) = μ∫ f(x)dx − ∫ x f(x)dx + ∫ x f(x)dx − ∫ μ f(x)dx
∞

μ

∞

μ

μ

0

μ

0
  

 

D(μ) = μF(μ) − ∫ x f(x)dx −
μ

0
μ[1 − F(μ)] + ∫ x f(x)dx

∞

μ
  

 

D(μ) = 2μF(μ) − 2∫ x f(x)dx
μ

0
  

 

Then, 

 

∫ x f(x)dx
μ

0
= ∫ x

μ

0

β θ2 ln v

(v−1)(θ2+1)
∑

(ln v)i

i!
(1 −

(θ2+1)+θx e−θx

θ2+1
)
βi+β−1

∞
i=0 (θ + x)e−θx dx  

 

Then, using the following binomial series expansion in equation (8), and simplify the expression   

 

=
β θk+2l+2 ln v

(v−1)(θ2+1)j+1
∑ ∑ ∑ ∑

(−1)j (ln v)i

i!
(
βi + β − 1

j
) (
j
k
) (
j − k
l
)∞

l=0
∞
k=0

∞
j=0

∞
i=0 ∫ xk+1

μ

0
(θ + x)e−θx(j+1) dx  

Let, assuming u =  e−θx(j+1) then the mean deviation is given by 

 

=
β θ2l ln v

(v−1)(θ2+1)j+1
∑ ∑ ∑ ∑

(−1)j (ln v)i

i!
(
βi + β − 1

j
) (
j
k
) (
j − k
l
)∞

l=0
∞
k=0

∞
j=0

∞
i=0 (

θ2(j+1)Γ(k+2,θμ(j+1))+Γ(k+3,θμ(j+1))

θ(j+1)k+3
)  
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D(μ) = 2μ
v
(1−

(θ2+1)+θμ e−θμ

θ2+1
)

β

−1

v−1
−

2
β θ2l ln v

(v−1)(θ2+1)j+1
∑ ∑ ∑ ∑

(−1)j (ln v)i

i!
(
βi + β − 1

j
) (
j
k
) (
j − k
l
) (

θ2(j+1)Γ(k+2,θμ(j+1))+Γ(k+3,θμ(j+1))

θ(j+1)k+3
)k

l=0
j
k=0

βi+β−1
j=0

G(x)β

i=0   

 

7. Mean deviation from median 

Let X be a random variable from (PES) distribution with median M. Then the mean deviation from median is defined as 

 

D(M) = E(|X − M|)  
 

D(M) = ∫ |X − M|
∞

0
 f(x)dx  

 

D(M) = ∫ (M − x)f(x)dx + ∫ (x − M)f(x)dx
∞

M

M

0
  

 

D(M) = MF(M) − ∫ x f(x)dx −
M

0
M[1 − F(M)] + ∫ x f(x)dx

∞

M
  

 

D(M) = μ − 2∫ x f(x)dx
M

0
  

 

Then,  

 

∫ x f(x)dx
M

0
= ∫ x

M

0

β θ2 ln v

(v−1)(θ2+1)
∑

(ln v)i

i!
(1 −

(θ2+1)+θx e−θx

θ2+1
)
βi+β−1

∞
i=0 (θ + x)e−θx dx  

 

Let, assuming u =  e−θx(j+1) then the Midian deviation is given by 

 

D(M) = μ − 2
β θ2l ln v

(v−1)(θ2+1)j+1
∑ ∑ ∑ ∑

(−1)j (ln v)i

i!
(
βi + β − 1

j
) (
j
k
) (
j − k
l
)∞

l=0
∞
k=0

∞
j=0

∞
i=0 (

θ2(j+1)Γ(k+2,θM(j+1))+Γ(k+3,θM(j+1))

θ(j+1)k+3
)  

8. Order statistics 

The derived pdf of the ith order statistics of the power exponentiated shanker distribution. Let X1, X2, … , Xn be a simple random sample 

from power exponentiated shanker distribution with cdf and pdf given by (5) and (6), respectively. Let X(1:n) ≤ X(2:n) ≤ ⋯ ≤ X(n:n) denote 

the order statistics obtained from this sample. We now given the pdf of Xr:n, say fr;n(x) of Xr:n, i = 1,2,… , n. The pdf of the rth order 

statistics Xr:n, r = 1, 2,… , n is given by  

 

fX(r)(x) =
n!

(r−1)!(n−r)!
(F(x))

r−1
(1 − F(x))

n−r
f(x), x > 0                                                                                                                         (11) 

 

Where F(. ) and f(. ) are given by (5) and (6) respectively, 

 

Cr:n =
n!

(r−1)!(n−r)!
  

 

fr:n = Cr:n(F(x))
r−1
(1 − F(x))

n−r
f(x)  

 

Using the following binomial series expansion in equation (8), and simplify the expression.   

 

fr:n = Cr:n ∑ (
n − r
s
) (−1)s (F(x))

(r+s−1)
f(x)∞

s=0   

 

fr:n = Cr:n ∑ (
n − r
s
) (−1)s  (

v
(1−

(θ2+1)+θx e−θx

θ2+1
)

β

−1

v−1
)

(r+s−1)

∞
s=0

βθ2

(v−1)(θ2+1)
v
(1−

(θ2+1)+θx e−θx

θ2+1
)
β

ln v (1 −
(θ2+1)+θx e−θx

θ2+1
)
β−1

(θ + x)e−θx  

 

fr:n = Cr:n
βθ2  ln v

(v−1)(θ2+1)
∑ ∑ (

n − r
s
) (
β(r + s − 1)

q
)∞

q=0 (−1)r+2s+q−1
1

(1−v)(r+s−1)
∞
s=0  v

(1−
(θ2+1)+θx e−θx

θ2+1
)
β(q+1)

(1 −
(θ2+1)+θx e−θx

θ2+1
)
β−1

(θ +

x)e−θx  
 

First order statistics 

 

f1:n = C1:n
βθ2  ln v

(v−1)(θ2+1)
∑ ∑ (

n − 1
s
) (
β(s)
q
)∞

q=0 (−1)2s+q
1

(1−v)(s)
∞
s=0  v

(1−
(θ2+1)+θx e−θx

θ2+1
)
β(q+1)

(1 −
(θ2+1)+θx e−θx

θ2+1
)
β−1

(θ + x)e−θx  

 

nth order statistics 
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fn:n = Cn:n
βθ2  ln v

(v−1)(θ2+1)
∑ (

β(n + s − 1)
q

)∞
q=0 (−1)n+2s+q−1

1

(1−v)(n+s−1)
v
(1−

(θ2+1)+θx e−θx

θ2+1
)
β(q+1)

(1 −
(θ2+1)+θx e−θx

θ2+1
)
β−1

(θ + x)e−θx  

 

9. Likelihood ratio test 

In this section, we derive the likelihood ratio test from the (PES) distribution. 

Let x1, x2, x3, … , xn be a random sample from the (PES) distribution. 

To testing the hypothesis, we have the null and alternative hypothesis. 

H0: f(x) = f(x, θ) against H1: f(x) = g(x) 
In test whether the random sample of size n comes from the Shanker distribution or Power Exponentiated Shanker distribution, the follow-

ing test statistics is used. 

 

Δ =
L1

L2
= ∏

f(xi,θ)

g(xi)

n
i=1   

 

Δ = ∏

(

 
 

βθ2

(v−1)(θ2+1)
v
(1−

(θ2+1)+θxi e
−θxi

θ2+1
)

β

ln v(1−
(θ2+1)+θxi e

−θxi

θ2+1
)

β−1

(θ+xi)e
−θxi

θ2

θ2+1
(θ+xi)e

−θxi

)

 
 n

i=1   

 

Δ = ∏  (
β ln v

(v−1)
v
(1−

(θ2+1)+θxi e
−θxi

θ2+1
)

β

(1 −
(θ2+1)+θxi e

−θxi

θ2+1
)
β−1

)n
i=1   

 

Then, using the following binomial series expansion in equation (8), and simplify the expression   

 

Δ = (
β ln v

(v−1)
)
n
∑

(ln v)i

i!

∞
i=0 ∏  (1 −

(θ2+1)+θxi e
−θxi

θ2+1
)
βi+β−1

n
i=1   

 

∆=
L1

L2
(
βθk+2l  ln v

(v−1)(θ2+1)j
)
n

∑ ∑ ∑ ∑ (
βi + β − 1

j
) (
j
k
) (
j − k
l
)∞

l=0
∞
k=0

∞
j=0

(ln v)i(−1)j

i!

∞
i=0 ∏ xi

kn
i=1   

 

Then, rejected the null hypothesis if 

 

∆= (
βθk+2l  ln v

(v−1)(θ2+1)j
)
n

∑ ∑ ∑ ∑ (
βi + β − 1

j
) (
j
k
) (
j − k
l
)∞

l=0
∞
k=0

∞
j=0

(ln v)i(−1)j

i!

∞
i=0 ∏ xi

kn
i=1 > k  

 

Equivalently, also reject the null hypothesis 

 

∆∗= ∏ xi
j−kn

i=1 > k (
βθk+2l  ln v

(v−1)(θ2+1)j
)
n

∑ ∑ ∑ ∑ (
βi + β − 1

j
) (
j
k
) (
j − k
l
)∞

l=0
∞
k=0

∞
j=0

(ln v)i(−1)j

i!

∞
i=0   

 

∆∗= ∏ xi
kn

i=1 > k∗ where k∗  
 

= k (
βθk+2l  ln v

(v−1)(θ2+1)j
)
n

∑ ∑ ∑ ∑ (
βi + β − 1

j
) (
j
k
) (
j − k
l
)∞

l=0
∞
k=0

∞
j=0

(ln v)i(−1)j

i!

∞
i=0   

 

For large sample size n, 2 log Δ is distribution as chi-square variates with one degree of freedom. Thus, we rejected the null hypothesis, 

when the probability value is given by p(Δ∗ > α∗), where α∗ = ∏ xi
kn

i=1  is less than level of significance and ∏ xi
kn

i=1  is the observed value 

of the statistics Δ∗. 

10. Bonferroni and Lorenz curves 

In this section, we have derived the Bonferroni and Lorenz curves from the (PES) distribution. 

The Bonferroni and Lorenz curve is a powerful tool in the analysis of distributions and has applications in many fields, such as economies, 

insurance, income, reliability, and medicine. The Bonferroni and Lorenz cures for a X be the random variable of a unit and f(x) be the 

probability density function of x. f(x)dx will be represented by the probability that a unit selected at random is defined as 

 

B(p) =
1

pμ
∫ x f(x)dx 
q

0
 L(p) = p B(p)  

 

And 

 

Where, q = F−1(p);  qϵ[0,1] and μ = E(X) 
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B(p) =
1

pμ
∫ x 

β θ2 ln v

(v−1)(θ2+1)
∑

(ln v)i

i!
(1 −

(θ2+1)+θx e−θx

θ2+1
)
βi+β−1

∞
i=0  

q

0
(θ + x)e−θx dx  

 

Then, using the following binomial series expansion in equation (8), and simplify the expression is   

 

B(p) =
β θk+2l+2 ln v

(v−1)(θ2+1)j+1
∑ ∑ ∑ ∑

(−1)j (ln v)i

i!
(
βi + β − 1

j
) (
j
k
) (
j − k
l
) ∫ xk+1

q

0
(θ + x)e−θx(j+1) dx∞

l=0
∞
k=0

∞
j=0

∞
i=0   

 

Then, assuming u =  e−θx(j+1) then the Bonferroni and Lorenz curves is given by 

Let’s make a substitution to simplify the integral is 

 

B(p) =
β θ2l ln v

(v−1)(θ2+1)j+1
∑ ∑ ∑ ∑

(−1)j (ln v)i

i!
(
βi + β − 1

j
) (
j
k
) (
j − k
l
) (

θ2(j+1)Γ(k+2,θq(j+1))+Γ(k+3,θq(j+1))

θ(j+1)k+3
)∞

l=0
∞
k=0

∞
j=0

∞
i=0   

 

After simplification we get 

 

B(p) = (
θ2(j+1)Γ(k+2)+Γ(k+3)

p(θ2(j+1)Γ(k+2,θq(j+1))+Γ(k+3,θq(j+1)))
)  

 

L(p) = (
θ2(j+1)Γ(k+2)+Γ(k+3)

θ2(j+1)Γ(k+2,θq(j+1))+Γ(k+3,θq(j+1))
)  

11. Entropies 

In this section, we derived the Rényi entropy, and Tsallis entropy from the (PES) distribution. 

It is well known that entropy and information can be considered measures of uncertainty, or the randomness of a probability distribution. 

It is applied in many fields, such as engineering, finance, information theory, and biomedicine. The entropy functionals for probability 

distribution were derived on the basis of a variational definition of uncertainty measure. 

11.1. R�́�nyi entropy 

Entropy is obtained as a random variable X is a measure of the variation of the uncertainty. It is used in many fields, such as engineering, 

statistical mechanics, finance, information theory, biomedicine, and economics. The entropy measure is the Rényi of order which is defined 

as 

 

Rλ =
1

1−λ
log ∫ [f(x)]λ

∞

0
 dx ; λ > 0, λ ≠ 1  

 

Rλ =
1

1−λ
log ∫ (

β θ2 ln v

(v−1)(θ2+1)
∑

(ln v)i

i!
(1 −

(θ2+1)+θx e−θx

θ2+1
)
βi+β−1

∞
i=0 (θ + x)e−θx)

λ
∞

0
dx  

 

Rλ =
1

1−λ
log ∫ (

β θ2 ln v

(v−1)(θ2+1)
)
λ

∑
(ln v)i

i!
(1 −

(θ2+1)+θx e−θx

θ2+1
)
λ(βi+β−1)

∞
i=0 (θ + x)λe−θλx

∞

0
dx  

 

Then, using the following binomial series expansion in equation (8), and simplify the expression is   

 

Rλ =
1

1−λ
log (

β θ2 ln v

(v−1)(θ2+1)j+1
)
λ

∑ ∑ ∑ ∑ ∑
(−1)jλi (ln v)i

i!
∞
m=0 (

λ(βi + β − 1)
j

) (
j
k
) (
j − k
l
) (
λ
m
)∫ xk+m

∞

0
e−θ(λ+j)x dx∞

l=0
∞
k=0

∞
j=0

∞
i=0   

 

To, solving the integral also obtained as 

 

Rλ =
1

1−λ
log (

β θ2l+m+2 ln v

(v−1)(θ2+1)j+1
)
λ

∑ ∑ ∑ ∑
(−1)jλi (ln v)i

i!
(
λ(βi + β − 1)

j
) (
j
k
) (
j − k
l
)∞

l=0
∞
k=0

∞
j=0

∞
i=0 (

λ
m
) 

Γ(k+m+1)

θm+1(λ+j)k+m+1
   

 

11.2 Tsallis entropy 

The Boltzmann-Gibbs (B-G) statistical properties initiated by Tsallis have received a great deal of attention. This generalization of (B-G) 

statistics was first proposed by introducing the mathematical expression of Tsallis entropy (Tsallis, (1988) for continuous random variables, 

which is defined as 

 

Tλ =
1

λ−1
(1 − ∫ [f(x)]λ

∞

0
 dx) ; λ > 0, λ ≠ 1  

 

Tλ =
1

λ−1
(1 − ∫ ( β θ2 ln v

(v−1)(θ2+1)
∑

(ln v)i

i!
(1 −

(θ2+1)+θx e−θx

θ2+1
)
βi+β−1

∞
i=0 (θ + x)e−θx)

λ
∞

0
 dx)  

 

Then, using the following binomial series expansion in equation (8), and simplify the expression is   
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Tλ =
1

λ−1
(
1 − (

β θ2 ln v

(v−1)(θ2+1)j+1
)
λ

∑ ∑ ∑ ∑ ∑
(−1)jλi (ln v)i

i!
∞
m=0 (

λ(βi + β − 1)
j

) (
j
k
) (
j − k
l
) (
λ
m
)∞

l=0
∞
k=0

∞
j=0

∞
i=0

× ∫ xk+m
∞

0
e−θ(λ+j)x dx

)  

 

Solving the integral also obtained as 

 

Tλ =
1

λ−1
(
1 − (

β θ2 ln v

(v−1)(θ2+1)j+1
)
λ

∑ ∑ ∑ ∑ ∑
(−1)jλi (ln v)i

i!
∞
m=0 (

λ(βi + β − 1)
j

) (
j
k
) (
j − k
l
) (
λ
m
)∞

l=0
∞
k=0

∞
j=0

∞
i=0

×
Γ(k+m+1)

θm+1(λ+j)k+m+1

)  

12. Estimations of parameter 

In this section, the maximum likelihood estimates of the power exponentiated shanker distribution (PESD) parameter is given. 

12.1. Maximum likelihood estimation (MLE) 

Consider x1, x2, x3, … , xn be a random sample of size n from the power exponentiated shanker distribution with parameter β, θ and v the 

likelihood function, which is defined as 

 

L(x; β, θ, v) = ∏ f(xi; β, θ, v)
n
i=1   

 

L(x; β, θ, v) = ∏ ( βθ2

(v−1)(θ2+1)
v
(1−

(θ2+1)+θxi e
−θxi

θ2+1
)

β

ln v (1 −
(θ2+1)+θxi e

−θxi

θ2+1
)
β−1

(θ + xi) e
−θxi)

n
i=1   

 

Then its log-likelihood function is given by 

 

ℓ = log L = n ln β + n ln θ2 − n ln(θ2 + 1) + n ln(ln v) − nln(v − 1) − θ∑ xi
n
i=1 + (β − 1)∑ ln (1 −

(θ2+1)+θxi e
−θxi

θ2+1
)n

i=1 +

ln v∑ (1 −
(θ2+1)+θxi e

−θxi

θ2+1
)
β

+ ∑ (θ + xi)
n
i=1

n
i=1   

 

Differentiating with respect to β, θ and v 
 

∂ log L

∂v
=

n

v ln v
−

n

v−1
+ ∑ (1 −

(θ2+1)+θxi e
−θxi

θ2+1
)
β

n
i=1 = 0                                                                                                                              (12) 

 

∂ log L

∂β
=
n

β
+ ln v∑ (1 −

(θ2+1)+θxi e
−θxi

θ2+1
)
β

ln (1 −
(θ2+1)+θxi e

−θxi

θ2+1
)n

i=0 + ∑ (1 −
(θ2+1)+θxi e

−θxi

θ2+1
) = 0n

i=1                                                 (13) 

∂ log L

∂θ
=
n2

θ
−

n2θ

(θ2+1)
− ∑ xi

n
i=1 − (β − 1)∑

xi
2(1−θ2)

(θ2+1)θxi
− β ln v∑ (1 −

(θ2+1)+θxi e
−θxi

θ2+1
)
β−1

xi
2(1−θ2)

(θ2+1)θxi
+ 1 = 0n

i=1
n
i=1                                   (14) 

 

The equation (12), (13) and (14) gives the maximum likelihood estimation of the parameters for the (PES) distribution. Although, the 

equation cannot be solved analytically, thus we solved numerically using R programming with data set. 

13. Applications 

Dat set. 1: This data consists of the life time (in years) of 40-blood cancer (leukemia) patients from one of ministry of health hospitals in 

Sdudhi Arabia reported in (25). This actual data is: 
0.315 0.496 0.616 1.145 1.208 1.263 1.414 2.025 2.036 2.162 
2.211 2.370 2.532 2.693 2.805 2.910 2.912 3.192 3.263 3.348 

3.427 3.499 3.534 3.767 3.751 3.858 3.986 4.049 4.244 4.323 

4.381 4.392 4.397 4.647 4.753 4.929 4.973 5.074 5.381  

 
Data Set. 2: The Data Under Consideration are the Life Times of 20 Leukemia Patients Who Were Treated by A Certain Drug (20). the Data Are: 

1.013 1.034 1.109 1.226 1.509 1.533 1.563 1.716 1.929 1.965 2.061 2.344 2.546 
2.626 2.778 2.951 3.413 4.118 5.136        

 

To compare the goodness of fit of the fitted distribution, the following criteria: Akaike Information Criteria (AIC), Bayesian Information 

Criteria (BIC), Akaike Information Criteria Corrected (AICC) and −2 log L. 
AIC, BIC, AICC and −2 log L can be evaluated by using the formula as follows. 

 

AIC = 2k − 2 log L , BIC = k log n − 2 log L  and AICC = AIC +
2k(k+1)

(n−k−1)
  

 

Where, k = number of parameters, n sample size and −2 log L is the maximized value of loglikelihood function. 

 

 

 

 



10 International Journal of Advanced Statistics and Probability 

 
Table 1: MLE’s AIC, BIC, AICC, And -2LogL of the Fitted Distribution for the Given Data Set 1 

Distribution ML Estimates -2log L AIC BIC AICC 

Power Exponentiated shanker Distribution 

 β̂ = 1.7502840 (0.8702718) 
 θ̂ = 0.9903102 (0.1214810) 
 v̂ = 21.6949251 (35.7883473) 

139.4219 141.2556 142.9192 
 
141.9414 

 

Power Exponentiated Exponential Distribution 

 β̂ = 2.2612389 (1.0884226) 
 θ̂ = 0.7897817 (0.1106604) 
v̂ = 25.7645262 (39.0785412) 

140.925 146.925 151.9157 147.6108 

Exponentiated Exponential Distribution 

α̂ = 3.43564629 (0.86309940) 
θ̂ = 0.60903417 (0.09188663) 

 

146.6542 150.6542 153.9813 151.3382 

Shanker  θ̂ = 0.54972161 (0.05806214) 144.7945 155.9545 157.6181 156.0597 

 
 

Table 2: MLE’s AIC, BIC, AICC, and -2logl of the Fitted Distribution for the Given Data Set 2 

Distribution ML Estimates -2log L AIC BIC AICC 

Power Exponentiated shanker Distribution 

β̂ = 5.8552727(2.8921143) 
θ̂ = 1.2974573 (0.5114641) 
v̂ = 0.3380986 (0.8529180) 

50.58192 56.58192 59.4152 

 

58.18192 

 

Power Exponentiated Exponential Distribution 

β̂ = 7.9230929 (3.8378895) 
θ̂ = 1.0917748 (0.4808820) 
   v̂ = 0.4081817 (1.03372427) 

51.38647 57.38647 60.21978 58.98647 

Exponentiated Exponential Distribution 
α̂ = 8.0836867 (3.9394382) 
θ̂ = 1.2260264 (0.2644192) 

54.52526 60.52526 63.41414 62.12526 

Shanker       θ̂ = 0.7124395 (0.10777871) 63.08856 65.08856 66.033 65.3107 

 

From table 1 and 2, it can be clearly observed and seen from the results that the Power Exponentiated Shanker distribution have the lesser 

AIC, BIC, AICC, -2log L, and values as compared to the Power Exponentiated Exponential Distribution, Exponentiated Exponential Dis-

tribution, and Shanker distributions, which indicates that the Power Exponentiated Shanker distribution better fits than the Power Expo-

nentiated Exponential Distribution, Exponentiated Exponential Distribution, and Shanker distributions. Hence, it can be concluded that the 

(PES) distribution leads to a better fit over the other distributions. 

 

 
Fig. 1: PDF Plot of Power Exponentiated Shanker Distribution. 
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Fig. 2: CDF Plot of Power Exponentiated Shanker Distribution. 

 

 
Fig. 3: Survival Plot of Power Exponentiated Shanker Distribution. 

 

 
Fig. 4: Hazard Plot of Power Exponentiated Shanker Distribution. 
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14. Conclusion 

The researchers' greatest concern has been selecting an appropriate model for fitting survival data. The Shanker distribution is one of the 

most well-liked distributions for lifespan data. In this paper, the shanker distribution is extended to provide a new distribution is extended 

to provide a new distribution called the power Exponentiated Shanker (PES) distribution to the model life time data. There are various 

specific cases that are addressed in the paper. The proposed distribution's many properties have been studied, including survival function 

and hazard function, moments, entropy’s, the Bonferroni and Lorenz curves and order statistics. The Inference of parameters for a (PES) 

distribution was obtained using the method of the maximum likelihood estimator. When the parameter has been estimated using the method 

of maximum likelihood, good performance has been observed. Medical research for cancer patients is incredibly important and frequently 

uses statistical distributions. Thus, by applying this distribution to some actual data sets that determine the survival of various cancer 

patients, its value is demonstrated. The results indicate the superior performance of the (PES) distribution compared to the other competitive 

distributions by means of different goodness of fit-criteria. Overall, the proposed power exponentiated shanker distribution provides a 

better fit than other existing distributions. 
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