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Abstract 
 

This work examined stochastic inventory control models for single-items with and without constraints in a building material company, 

with equal importance to similar distribution companies with large inventories. The study is an improvement on inventory control for 

single-items with probabilistic demand. The chi-square goodness-of-fit test was used to identify the best-fit probability distribution of the 

number of demands of each considered items. The different costs considered in this work were purchase cost with added tax-cost, ordering 

cost, holding cost and shortage cost while the items covered were: 2 inches zinc nail (in cartons) which number of demand follows a 

Weibull distribution with estimated parameters, 𝛼 = 6 and 𝛽 = 36; 10mm rod (in lengths) which number of demand equally follows a 

Weibull distribution with estimated parameters, 𝛼 = 2 and 𝛽 =  607; 5 inches nail (in cartons) which number of demand follows a normal 

distribution with estimated parameters, 𝜇 = 10.696 and 𝜎 = 0.3228 and urban zinc (in bundles) which number of demand follows a Ray-

leigh distribution with estimated parameter, 𝜎 = 74.827. These estimated parameters were used for computing the mean of each item as 

the basis for obtaining the Economic Order Quantity for the respective items. A modified Hadley Whitin algorithm and the trimming 

methods were respectively used to obtain the optimum order quantity and reorder point of items for the replenishment models without 

constraint and with constraints. Results obtained from models with constraint yields lower total variable cost and were therefore recom-

mended for single-item replenishment. 

 
Keywords: Unconstrained Models; Constrained Models; Variable Demand; Probability Distribution; Single Replenishment; Tax-Cost. 

 

1. Introduction 

Inventory control refers to the process of managing stock levels to satisfy customers demand while also trying to minimize costs. Some 

key components include ordering policies, safety stock, lead time and demand. Stochastic inventory models are quite different from deter-

ministic models because they consider demand as a random variable and not as constant. These models use probability distributions in 

describing the number of demand and aim at optimizing inventory policies under uncertainty. Mathematically, concepts relating to uncon-

strained variable demand assumes that demand can widely vary but not subjected to specific constraints while in constrained variable 

demand, its variability is usually limited by certain constraints like warehouse capacity, number of items constraint, budget restriction and 

many more. Researches in the past years, have considered Economic Order Quantity as a determining factor for the quantity of items a 

company or retailer should order to help minimize the total inventory cost.  

The origin of modern inventory management principles can be traced back to [10] when the first inventory model was developed. This 

model was expanded by [23] who derived the formula for Economic Order Quantity (EOQ). He proposed that EOQ assumes a consistent 

demand rate and timely supply replenishment, but real-world scenario often feature unpredictable market conditions and varying demand 

rates. Furthermore, [7] studied some probabilistic models of the case, where both demand and lead procurement lead time are identically 

and independently distributed random variables. 

Early literature on inventory control and its development include; [8], [4], [5], [11] and [15]. Specifically, [3] examined an integrated 

inventory control and inspection policies with deterministic demand while [20] proposed deterministic inventory lot-size models with time-

varying demand and cost under generalized holding cost. Additionally, [17] introduced the concept of optimal inventory policy for items 

having linear demand variable deterioration rate with trade credit while the concept of periodic review probabilistic inventory system with 

zero lead time under some constraint and varying holding cost was eventually developed by [6]. Furthermore, constrained probabilistic 

economic order quantity model under varying order cost and zero lead time via geometric programming was developed by [12]. The use 

of KKT conditions was used by [1] to examine a multi-item probabilistic inventory models with perishable products and warehouse 

http://creativecommons.org/licenses/by/3.0/


38 International Journal of Advanced Statistics and Probability 

 
constraints while a multi-item multi-period inventory control model that considered expiration factor, all unit discount policy and ware-

house constraints was later developed by [16]. The characteristics considered in this study were probabilistic demand, perishable products, 

and warehouse constraints for multi-item inventory models. The results of the developed inventory model provided two optimal ordering 

times, namely ordering time-based on warehouse capacity and joint order time. In addition, [9] investigated a probabilistic multi-item 

single –source inventory model with varying shortage costs while a pricing inventory model for non-instantaneous deteriorating items with 

partial backordering and price dependent stochastic demand under two – level trade credit policy was examined by [14]. 

Furthermore, [21] analyzed probability distributions of variable demand rates in a multi-item inventory problem. The demands of selected 

products were distributed according to different probability distributions namely; normal, Weibull and uniform distributions and the optimal 

order quantity, probabilities of shortage and no shortage for these selected items were also obtained. Furthermore, a multi-objective particle 

swarm optimization algorithm was used to optimize total inventory cost and inventory layout management in a multi-item inventory control 

model by [19]. In a later development, [22] developed an inventory model for determining optimum order quantities for four different 

selected items with different probability demand functions subject to constraints: warehouse space, limited capital, specified level of in-

ventory and number of order constraints. The location parameter estimate of the respective probability distribution provides a dynamic 

description of the behavior and value of the demand rate over a period of time. 

Hence, this work seeks a modification of the total variable cost by incorporating tax as part of purchase cost for single items replenishment 

models with variable demand. The effect of environmental condition (constrained and unconstrained) on the optimal order quantity Qi
∗ and 

reorder point Ri
∗ of the model shall also be investigated using data from building materials company. 

2. Methodology 

2.1. Notations 

The following notations will be used in this work: 

n = total number of items being controlled simultaneously 

fi = floor area (storage space) required per unit of item i (i = 1,2, … , n) 

W = warehouse space limit to store all items in the inventory 

D = average demand within one planning period 

θ = purchase cost per unit of item 

t = tax-cost on each item 

Q = order quantity 

R = reordered point 

K = ordering cost per order for single replenishment 

M = shortage cost per unit 

T1 = trimming constant 

Y = holding cost fraction per unit, per planning period 

TVC = Total Variable Cost 

2.2. Single item replenishment model without constraint 

In line with [13], the following costs will be considered: 

1) Purchasing cost 

2) Ordering cost 

3) Holding cost 

4) Shortage cost 

 

Where, Purchasing cost = purchase cost per uit × average demand (θD)                                                                                                 (1) 

 

Ordering cost =
ordering cost

order
 × ordering frequency in a year  

 

= k ×  
D

Q
                                                                                                                                                                                                         (2) 

 

Holding cost = (holding cost per unit) X (the average of stored items)  

 

= θY ×
Q+E[R−V]

2
+

E[R−V]

2
  

 

= {θY} ×
Q

2
+ R − E[V]                                                                                                                                                                                 (3) 

 

Where V represents the average demand of each item, during lead time. 

Shortage cost = (shortage cost per unit )X (expected shortage )X (shortage frequency in a year) 

 

= M × E[R − V] ×
D

Q
 =  

MD

Q
(∫ V − R)f(V)dv

∞

R
                                                                                                                                           (4) 

 

Combining Equations 1 – 4, the total annual inventory cost for the model becomes: 

 

TVC = { ϴD +
KD

Q
+ ϴY [

Q

2
+ R − E(V)] +

MD

Q
∫ (V − R)f(V)dv}

∞

R
                                                                                                              (5) 
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Equation (5) captures the summation of the different cost considered in [13] but without the inclusion of tax-cost either as an incorporated 

cost or as one of the several costs. This work seeks to consider the inclusion of tax as part of the purchase cost (tax at purchase). Therefore, 

(5) is modified by incorporating tax-cost, t, into the purchasing cost of each item. Thus;  

 

TVC = {( ϴD + t) +
KD

Q
+ ϴY [

Q

2
+ R − E(V)] +

MD

Q
∫ (V − R)f(V)dv}

∞

R
                                                                                                     (6) 

 

Finding the total variable inventory cost entails satisfying the minimization conditions with respect to the order quantity, Q and the reorder 

point, R. Hence; 

 

 
∂

∂Q
TVC =

∂

∂Q
{( ϴD + t) +

KD

Q
+ ϴY [

Q

2
+ R − E(V)] +

MD

Q
∫ (V − R)f(V)dv}

∞

R
} = 0 

 

= −
KD

Q2 +
ϴY

2
−

MD

Q2 ∫ (V − R)f(V)dv = 0
∞

R
  

 

=
MD

Q2 ∫ (V − R)f(V)dv +
KD

Q2

∞

R
=

ϴ Y

2
  

 

 Q2 =
2D[K+M ∫ (V−R)f(V)dv]

∞

R

ϴY
   

 

Q∗ = √2D[K+M ∫ (V−R)f(V)dv]
∞

R

ϴY
                                                                                                                                                                          (7) 

 

Equation (7) represents the optimal ordering quantity for single item replenishment model without constraint. Also, 

 
𝜕

𝜕𝑅
𝑇𝑉𝐶 =

𝜕

𝜕𝑅
{( 𝛳𝐷 + 𝑡) +

𝐾𝐷

𝑄
+ 𝛳𝑌 [

𝑄

2
+ 𝑅 − 𝐸(𝑉)] +

𝑀𝐷

𝑄
∫ (𝑉 − 𝑅)𝑓(𝑉)𝑑𝑣} = 0

∞

𝑅
  

 

= 𝛳𝑌 +
𝑀𝐷

𝑄
[∫

𝜕

𝜕𝑅
(𝑉 − 𝑅)𝑓(𝑉)𝑑𝑣

∞

𝑅
] = 0  

 

𝛳𝑌 +
𝑀𝐷

𝑄
[− ∫ 𝑓(𝑉)𝑑𝑣] = 0

∞

𝑅
  

 

𝛳𝑌 −
𝑀𝐷

𝑄
∫ 𝑓(𝑉)𝑑𝑣 = 0

∞

𝑅
  

 

 
𝑀𝐷

𝑄
∫ 𝑓(𝑉)𝑑𝑣 = 𝛳𝑌

∞

𝑅
 

 

𝐻𝑒𝑛𝑐𝑒; 
𝜕

𝜕𝑅
𝑇𝑉𝐶 =  𝑀𝐷 ∫ 𝑓(𝑉)𝑑𝑣 = 𝛳𝑌𝑄

∞

𝑅
  

 

∫ 𝑓(𝑉)𝑑𝑣 =
𝛳𝑌𝑄

𝑀𝐷
= 𝑅

∞

𝑅
                                                                                                                                                                                  (8) 

 

Equation (8) represents the optimal reorder point involving single item replenishment model without constraint. 

2.3. Single item replenishment model with a warehouse space availability constraint 

In this section, total warehouse space constraint, according to [18] is introduced. 

Let 𝑇𝑉𝐶 be the objective function; 

 

Min( 𝑇𝑉𝐶) = ∑ ⌊
(𝜃𝑖𝐷𝑖 + 𝑡) +

𝐾𝑖𝐷𝑖

𝑄𝑖
+ {𝜃𝑖𝑌𝑖 (

𝑄𝑖

2
+ 𝑅𝑖 − 𝐸(𝑉))} +

𝑀𝑖𝐷𝑖

𝑄𝑖
∫ (𝑉𝑖 − 𝑅𝑖)𝑓(𝑉𝑖)𝑑𝑣𝑖

∞

𝑅𝑖

⌋ 𝑛
𝑖=1                                                                                                         (9) 

 

Subject to constraint 

 
∑ 𝑓𝑖𝑄𝑖 ≤ 𝑊 𝑛

𝐼=1   

 

𝑄𝑖 ≥ 0 ∀ 𝑖  
 

To determine the optimal order quantities for different items so as to achieve minimum value of 𝑇𝑉𝐶, let 𝜆 be the non–negative Lagrange 

multiplier. The Lagrange function, L, is given as; 

 

𝐿(𝑄𝑖 , 𝜆) = 𝑇𝑉𝐶 + 𝜆(∑ 𝑓𝑖𝑄𝑖 − 𝑊 𝑛
𝐼=1 )  

 

The necessary conditions for 𝐿 to be minimum are: 

1) 
𝜕

𝜕𝜆
(𝑄𝑖 , 𝜆) =  𝜆(∑ 𝑓𝑖𝑄𝑖 − 𝑊 𝑛

𝐼=1 ) = 0 

 

∴  ∑ 𝑓𝑖𝑄𝑖 = 𝑊 𝑛
𝑖=1                                                                                                                                                                                         (10) 
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2) 
𝜕𝐿(𝑄𝑖,𝜆)

𝜕𝑄𝑖
=

𝜕

𝜕𝑄𝑖
⌊(𝜃𝑖𝐷𝑖 + 𝑡) +

𝐾𝑖𝐷𝑖

𝑄𝑖
+ {𝜃𝑖𝑌𝑖 (

𝑄𝑖

2
+ 𝑅𝑖 − 𝐸(𝑉))}⌋ + 

 

 [
𝑀𝑖𝐷𝑖

𝑄𝑖
∫ (𝑉𝑖 − 𝑅𝑖)𝑓(𝑉𝑖)𝑑𝑣𝑖

∞

𝑅𝑖
] + 𝜆(∑ 𝑓𝑖𝑄𝑖 − 𝑤𝑛

𝑖=1 ) = 0                                                                                                                               (11) 

 

= −
𝐾𝑖𝐷𝑖

𝑄𝑖
2 +

𝛳𝑖𝑌𝑖

2
−

𝑀𝑖𝐷𝑖

𝑄𝑖
2 ∫ (𝑉𝑖 − 𝑅𝑖)𝑓(𝑉𝑖)𝑑𝑣𝑖 + 𝜆𝑓𝑖 = 0

∞

𝑅𝑖
  

 
𝑀𝑖𝐷𝑖

𝑄𝑖
2 ∫ (𝑉𝑖 − 𝑅𝑖)𝑓(𝑉𝑖)𝑑𝑣𝑖 +

𝐾𝑖𝐷𝑖

𝑄𝑖
2 =

𝛳𝑖𝑌𝑖

2
+ 𝜆𝑓𝑖  

∞

𝑅𝑖
  

 
𝑀𝑖 𝐷𝑖 ∫ (𝑉𝑖−𝑅𝑖)𝑓(𝑉𝑖)𝑑𝑣𝑖+𝐾𝑖𝐷𝑖

∞

𝑅𝑖

𝑄𝑖
2 =  

𝑄𝑖𝑌𝑖+2𝜆𝑓𝑖

2
  

 

𝑄𝑖
2 =

2𝐷𝑖(𝐾𝑖+𝑀𝑖 ∫ (𝑉𝑖−𝑅𝑖)𝑓(𝑣𝑖)𝑑𝑣𝑖
∞

𝑅𝑖
)

(𝜃𝑖𝑌𝑖+2𝜆𝑓𝑖)
  

 

 𝑄𝑖
∗  = √

2𝐷𝑖(𝐾𝑖+𝑀𝑖 ∫ (𝑉𝑖−𝑅𝑖)𝑓(𝑣𝑖)𝑑𝑣𝑖
∞

𝑅𝑖
)

(𝜃𝑖𝑌𝑖+2𝜆𝑓𝑖)
                                                                                                                                                             (12) 

 

Equation (12) represents the optimal ordering quantity for single item replenishment model with warehouse capacity constraint. Similarly, 

subjecting reorder point of items to warehouse availability constraint, we have; ∑ 𝑓𝑖𝑅𝑖 ≤ 𝑊𝑛
𝑖=1 , 

where 𝑅𝑖 is the reorder point of each item. Therefore, the min(TVC) with Reorder point 𝑅𝑖 is given as: 

 

𝑚𝑖𝑛(𝑇𝑉𝐶) = ∑ ⌊(𝜃𝑖𝐷𝑖 + 𝑡) +
𝐾𝑖𝐷𝑖

𝑄𝑖
+ {𝜃𝑖𝑌𝑖 (

𝑄𝑖

2
+ 𝑅𝑖 − 𝐸(𝑉))}  +

𝑀𝑖𝐷𝑖

𝑄𝑖
∫ (𝑉𝑖 − 𝑅𝑖)𝑓(𝑉𝑖)𝑑𝑣𝑖

∞

𝑅𝑖
⌋ 𝑛

𝑖=1   

 

Subject to:                                                                                                                                                                                                    (13) 

 
∑ 𝑓𝑖𝑅𝑖 ≤ 𝑊 𝑛

𝐼=1   

 

𝑄𝑖 ≥ 0 ∀ 𝑖  
 

To determine the optimal reorder point for different items so as to achieve minimum value of 𝑇𝑉𝐶, the Lagrange function was obtained as 

follows; 

 

𝐿(𝑄𝑖 , 𝜆) = 𝑇𝑉𝐶 + 𝜆(∑ 𝑓𝑖𝑅𝑖 − 𝑊 𝑛
𝐼=1 )  

 

The necessary conditions for 𝐿 to be minimum are: 

 

1) 
𝜕

𝜕𝜆
(𝑄𝑖 , 𝜆) =  𝜆(∑ 𝑓𝑖𝑅𝑖 − 𝑊 𝑛

𝐼=1 ) = 0 

 

∴ ∑ 𝑓𝑖𝑅𝑖 = 𝑊 𝑛
𝑖=1   

 

2) 
𝜕𝐿(𝑄𝑖,𝜆)

𝜕𝑅𝑖
=

𝜕

𝜕𝑅𝑖
⌊(𝜃𝑖𝐷𝑖 + 𝑡) +

𝐾𝑖𝐷𝑖

𝑄𝑖
+ {𝜃𝑖𝑌𝑖 (

𝑄𝑖

2
+ 𝑅𝑖 − 𝐸(𝑉))}⌋ + [

𝑀𝑖𝐷𝑖

𝑄𝑖
∫ (𝑉𝑖 − 𝑅𝑖)𝑓(𝑉𝑖)𝑑𝑣𝑖

∞

𝑅𝑖
] + 𝜆(∑ 𝑓𝑖𝑄𝑖 − 𝑤𝑛

𝑖=1 ) = 0  

 

 =  𝑄𝑖𝑌𝑖 −
𝑀𝑖𝐷𝑖

𝑄𝑖
∫ 𝑓(𝑉𝑖) + 𝜆𝑓𝑖 = 0

∞

𝑅𝑖
  

 

 
𝑀𝑖𝐷𝑖

𝑄𝑖
∫ 𝑓(𝑉𝑖) = 𝜃𝑖𝑌𝑖 + 𝜆𝑓𝑖

∞

𝑅𝑖
                                                                                                                                                                         (14) 

 

By multiplying both sides of (14) by 
𝑄𝑖

𝑀𝑖𝐷𝑖
 , we obtain; 

 

 ∫ 𝑓(𝑉𝑖) =
𝑄𝑖(𝜃𝑖𝑌𝑖+𝜆𝑓𝑖)

𝑀𝑖𝐷𝑖

∞

𝑅𝑖
= 𝑅𝑖

∗                                                                                                                                                                      (15) 

 

Equation (15) represents the optimal reorder point for single item replenishment model with warehouse capacity constraint. 

2.4. Probability distribution of demand of items 

Demand of items vary from time to time due to need and purchasing power. Thus, stochastic inventory models incorporate the variation in 

demand and uncertain lead time. In this case, demand of an item is not known to be deterministic but are considered variables. Hence, 

demand is a variable and there is need to obtain the probability distributions for the demand of the items. The following probability distri-

butions for the demand of the selected items were considered after necessary preliminary analysis: 

1) When Demand of item is assumed to follow normal distribution. 

2) When demand of item is assumed to follow Weibull distribution. 

3) When demand of item is assumed to follow Rayleigh distribution. 
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2.4.1. Probability inventory model when demand follows a Weibull distribution 

The probability density function of a two parameter Weibull random variable is; 

 

 𝑓(𝑉, 𝛼, 𝛽) = {(
𝛼

𝛽
) (

𝑉

𝛽
)

(𝛼−1)

𝑒
−[

𝑉

𝛽
]
𝛼

, 𝑉 ≥ 0

0, 𝑉 < 0
                                                                                                                                                  (16) 

 

The mean of a Weibull distribution is given by; 

 

𝐸[𝑉] = 𝛽𝛤 (1 +
1

𝛼
)                                                                                                                                                                                      (17) 

2.4.2 Probability inventory model when the demand follows a normal distribution  

The probability density function of a normal distribution is given by; 

 

𝑓(𝑉, 𝜇, 𝜎2) =
1

√2𝜋
𝜎  𝑒−

(𝑉−𝜇)2

2𝜎2  ;  𝑉 ≥ 0;  𝜎 ≥ 0                                                                                                                                                (18) 

 

The mean of a normal distribution is given by; 

 

𝐸(𝑉) = 𝜇                                                                                                                                                                                                     (19) 

 

2.4.3 Probability inventory model when demand follows a Rayleigh distribution 

The probability density function of Rayleigh distribution with a scale parameter, 𝜎 ≥ 0 is given by; 

 

𝑓(𝑉, 𝜎) =
𝑉

𝜎2  𝑒− 𝑉2

(2𝜎2)
                                                                                                                                                                                  (20) 

 

The mean of a Rayleigh distribution is given by; 

 

𝐸[𝑉] = 𝜎 √
𝜋

2
                                                                                                                                                                                                (21) 

2.5. A modified Hadley-whitin algorithm for calculating the optimal order quantity and reorder point without con-

straint 

The Hadley–Whitin algorithm [8] was modified in this work by incorporating the terminating condition and the user specified level of 

accuracy. It is given as follows: 

1) Set 𝜀 = 0.05 or any other specified level of accuracy 

2) Compute 𝑄 = √
2𝐷𝐾

(𝜃+𝑡)𝑌
 

3) Compute 𝑅𝑖 using ∫ 𝑓(𝑉)𝑑𝑣 =
𝛳𝑌𝑄

𝑀𝐷
= 𝑅

∞

𝑅
 

4) Compute 𝑄𝑖  𝑢𝑠𝑖𝑛𝑔 𝑄∗ = √2𝐷[𝐾+𝑀 ∫ (𝑉−𝑅)𝑓(𝑉)𝑑𝑣]
∞

𝑅

𝛳𝑌
  

5) Compute 𝑄𝑖+1
 from step 4  

6) Compute 𝑅𝑖+1 from step 3 

7) Is |𝑄𝑖 − 𝑄𝑖+1| ≤  𝜀 ? If yes, stop and go to step 8. Otherwise return to step 5  

8) Is |𝑅𝑖 − 𝑅𝑖+1| ≤  𝜀 ? If yes, stop and go to step 9. Otherwise return to step 6 

9) Terminate the algorithm if steps 7 and 8 are satisfied. 

2.6. Trimming method for finding the optimal ordering quantity of single replenished item with constraints 

This is an improved method of arriving at the optimum order quantity when compared to the trial-and-error method of minimizing the cost 

equations considering some limitations (constraints).  

According to [18], the Lagrange method of solving multi–item deterministic inventory models involve the systematic trial and error method 

used to find 𝜆∗ (the optimum value of 𝜆 ) resulting in simultaneous values of 𝑞𝑖
∗ satisfying the given constraint equations. However, results 

shown by [2] in comparing the minimized cost of an inventory using trial and error method on one side and trimming method on the other 

end reveals the trimming method to be a better option that leads to optimum order quantity without having to go through so many iterations 

which is peculiar to the trial-and-error method. Therefore, the trimming method eases computation and speed over the trial-and-error 

method. 

The trimming algorithm for the determination of optimal ordering quantity for single item replenishment involves the following steps: 

1) Determine the unconstrained value of 𝑄𝑖 using Equation 7 

2) Compute the value of ∑ 𝑓𝑖𝑄𝑖
𝑛
𝑖=1  

3) If the value ∑ 𝑓𝑖𝑄𝑖 ≤ 𝑊𝑛
𝑖=1  ; stop and set the obtained 𝑄𝑖 to 𝑄𝑖

∗. Otherwise go to step 4 

4) Introduce a trimming constant, 𝑇1 =
𝑊

∑ 𝑓𝑖𝑄𝑖
4
𝑖=1

  

5) 𝑆𝑒𝑡 𝑄𝑖
∗ = 𝑇1𝑄𝑖  ∀ 𝑖 = 1,2 … 𝑛 
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6) If ∑ 𝑓𝑖𝑄𝑖 ≤ 𝑊𝑛

𝑖=1 , stop. Otherwise go to step 4. 

 

Similarly, the above algorithm can be used to obtain the optimal reorder point, by replacing 𝑄𝑖  with  𝑅𝑖  at each step of the algorithm. 

 

3. Application to the building materials inventory 
 

Inventory on four selected building materials in Table 1 were obtained from Ubotex limited, Uyo in Nigeria for practical implementation 

and adaptation of the models and algorithms. 

 
Table 1: Cost Values for Selected Items 

 Zinc nail  10mm rod 5 inches nail Urban zinc  

Annual demand  409 6443 2960 1125 
Purchased cost/unit 23800 2950 24500 95000 

Tax paid at Purchase 1190 148 1225 4750 

Shortage per unit 1500 186 1554 5985 
Ordering cost per unit 9996 1239 10290 39900 

Holding cost fraction  0.04 0.02 0.05 0.01 

Floor space (Sq. Ft/Unit) 0.611 1.5 0.95 0.8 

4. Results 

4.1. Probability distribution for the quantity demand of items 

The quantity demand of each item followed different probability distributions. The most suitable probability distribution for the demand 

rate of each item was determined using the chi-square goodness-of-fit test with the aid of Easyfit software. The quantity demand data of 

zinc nail was found to follow Weibull distribution in chi-square goodness-of-fit test with a rank of 2, having scale parameter, α =
6 and shape parameter, β = 36. This is because the probability distribution with rank one did not represent a demand curve and cannot 

be used to model same. The demand quantity of 10mm rod was found to equally follow a Weibull distribution in a chi-square goodness-

of-fit test with a rank of 1, having a scale parameter, α = 2 and shape parameter, β = 607. 
Furthermore, the demand of 5 inches nail followed a normal distribution in a chi-square goodness-of-fit test with rank of 1, having mean 

value, μ = 10.696 and variance, σ = 607. Finally, the quantity demand of urban zinc was found to have followed a Rayleigh distribution 

in a chi-square goodness-of-fit test with rank of 4, having mean value, μ = 93.78 and scale parameter, σ = 74.827. The Rayleigh distri-

bution with rank of 4 was chosen because other distributions that preceded it didn’t represent a demand curve.  

Easyfit (5.6) software was used to perform the goodness-of-fit test for these items as well as the parameter estimates as shown in Table 2.  

 
Table 2: Summary of Probability Distribution for the Demand of Each Product, Rank of Chi-Square Goodness-of-Fit Test and Parameters Estimates 

Item  Probability distribution  Chi-square ranks  Parameter estimates 

2 inches nail  Weibull 2 𝛼 = 6 ;  𝛽 = 36  

10mm rod  Weibull 1 𝛼 = 2 ;  𝛽 = 607  

5 inches nail   Normal  1 𝜇 = 10.696 ; 𝜎 = 607 

Urban zinc  Rayleigh 4 𝜎 = 74.827  

4.2. Computation of optimal economic order quantity (EOQ) and cost components for single replenished items with-

out constraints  

The modified Hadley-Whitin algorithm of section 2.5 was used to obtain the optimal order quantity and reorder point of single replenished 

items without constraint in Table 3. Also, the computation of the different cost components involving these items was done using equations 

(1), (2), (3) and (4) which represent the purchase, ordering, holding and shortage costs respectively. 

 
Table 3: Results of Reorder Point, EOQ and Cost Components for Single Item Replenishment without Constraint 

 Item1 (cartons) Item 2 (length) Item3 (cartons) Item4 (bundles) 

 Q 96 1676 218 300 

 R 44 930 18 164 

Total purchase cost  N218,546,074   
Total ordering cost   N337, 208   

Total holding cost   N5, 433,953   

Total shortage cost   N9, 480   
Total variable cost  N224,326,715   

4.3. EOQ, Reorder point and cost components for single replenished items with warehouse space availability con-

straint 

The algorithm of section 2.6 was used to determine the optimal order quantity of each item with a warehouse space constraint. Furthermore, 

equations (1), (2), (3), (4) were equally used to determine the purchase cost, ordering cost, holding cost and shortage cost respectively in 

Table 4.  

 
Table 4: Results of Eoq, Reorder Point and Cost Components for Single Item Replenishment with Warehouse Space Constraint 

 Item1 (cartons) Item 2 (length) Item3 (cartons) Item4 (bundles) 

 Q 62 1089 141 197 

 R 44 930 18 164 
Total purchase cost  N218,546,074   

Total ordering cost  N517, 654   
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Total holding cost  N4,089,263   

Total shortage cost  N14,640   

Total variable cost  N223,167,631   

5. Discussion 

5.1. Comparing the economic order quantity (EOQ) and cost components of single replenished items without con-

straint with those of single replenished items with constraint 

The total inventory cost involving single item replenishment with constraint in Table 4 is less than that of the model without an imposed 

constraint in Table 3. Also, the order quantities and reorder points of single item replenishment with constraint in Table 4 were equally less 

than the values obtained without constraint in Table 3. These outcomes are logical on the premise that constraints have a way of controlling 

costs by restricting inventory levels, ordering quantities and reorder points. This ensures that inventory-related expenses such as purchase 

costs, ordering costs, holding costs and shortage costs, are minimized. The obtained results are in line with [13] who concluded that single 

replenishment model with constraints do minimize total variable cost than the model without constraint. 

Also, the results in Table 4 reveals that the imposition of the warehouse capacity constraint also ensured that a minimum level of inventory 

is maintained, thus reducing the risk of stock outs and lost sales thereby enhancing customer satisfaction and service levels - a result that 

agrees with [12].  

5.2. Inclusion of tax-cost 

The inclusion of tax-cost in the models increases the purchase cost of each item, because tax adds to the total acquisition cost of inventory 

and this cost data is important for statistical analysis, allowing businesses to evaluate mean and other location and dispersion measures of 

inventory costs for comprehensive business decision. It also helps the company in predicting the future by adjusting pricing strategies and 

anticipating changes in demand based on price sensitivity. However, it didn’t really affect the ordering quantity of these items. This is 

because the partial derivatives of the total variable cost function with respect to the variables of interest (Q and R) left the tax-cost (t) as a 

constant equal to zero in each case.  

6. Conclusion 

This work has revealed that imposing constraints related to storage capacity can help in ensuring minimum inventory level of a company 

in line with financial and physical limitations; hence, preventing overstocking or understocking. Also, the inclusion of tax-cost increases 

total inventory cost, a layout for holistic business analysis and decision making. These will help in creating a realistic and practical inventory 

model which agrees with real-world limitations and goals, which in turn leads to better decision-making and profitability. 
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