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Abstract 
 

This study introduces the Log-Dagum Singh Maddala (4P) distribution, a significant contribution to the field of continuous distributions. 

We investigate its statistical properties including probability density, hazard rate, survival functions, quantiles, and order statistics. The 

distribution is thoroughly characterized using multiple approaches and maximum likelihood estimation is used to determine the parameters. 

The model's effectiveness is evaluated using three real-world datasets and a comparative analysis with established distributions highlights 

its advantages. The results confirm the excellence of the proposed model demonstrating its practical significance in real data analysis. 

 
Keywords: Log-Dagum Distribution; Probability Distributions; Characterization; Simulation Study; Maximum Likelihood; Parameter Estimation; Singh 

Maddala Distribution. 

 

1. Introduction 

Statistical distributions have been generalized to enhance their flexibility by introducing additional shape parameters. This allows for a 

better fit to real-world data which often exhibits complexities that traditional distributions cannot capture. These generalizations enable 

researchers to model various phenomena more accurately such as skewness and heavy-tailedness. The generalized beta distribution, pro-

posed by Singh and Maddala (1976) is a notable example. The Dagum distribution, introduced by Camilo Dagum in (1977) is a continuous 

probability distribution used to model non-negative random variables. By applying a logarithmic transformation to this distribution we can 

derive the key characteristics of the resulting log-Dagum random variable offering benefits like variance stabilization and skewness nor-

malization. 

The Dagum distribution has attracted significant research interest due to its competitive performance in modeling various phenomena. To 

enhance its flexibility several extensions have been proposed, including the log-Dagum, Mc-Dagum, beta-Dagum and extended Dagum 

distributions. These models offer improved structural properties and parameter estimates making them valuable tools for data analysis. 

Additionally, weighted and Poisson variants of the Dagum distribution have been introduced further expanding its applicability. Recent 

advancements include the exponentiated generalized exponential Dagum distribution, power log-Dagum distribution and the odd Dagum-

G family which provide even more versatility. The Dagum distribution's hazard rate function is a crucial aspect exhibiting diverse shapes 

that make it suitable for various fields. The Log-Dagum distribution introduced by Domma (2004) has been extensively studied for its 

kurtosis properties by Polisicchio and Zenga (1997). Further research by Afify and Alizadeh (2020) explored its properties and parameter 

estimation methods. The Log-Dagum distribution has since been widely applied in various fields including economics, web traffic analysis, 

insurance, seismology, finance and telecommunications showcasing its versatility. Recent advancements in distribution development in-

volve adding parameters to baseline distributions generating new families of distributions that have been successfully employed in model-

ing diverse data sets across multiple areas. Some of the familiar generators are beta-G are studied in Eugene et al., (2002). Kumaraswamy-

G are discussed Cordeiro and de Castro (2011). T-normal are studied in Alzaatreh et al., (2014a) gamma-G (type II) Risti´c and Balakrish-

nan (2012) transformed-transformer {T-X} family are discussed in Alzaatreh et al., (2013) new Weibull-G are studied in Tahir et al., (2016) 

some new members of the {T-X} family of distributions are studied in Jamal and Nasir (2016). Exponentiated {T-X} family is examined 

in Alzaghal et al. (2013) T-X{Y} family (a quantile based approach) Aljarrah et al., (2014). A modified {T-X} family of distributions is 

discussed in Aslam et al., (2020). Applications and properties of a new member of the {T-X} family of distributions are discussed Handique 

et al., (2021). 

Recent research has explored the Log Dagum Weibull distribution, with Khadim et al., (2021) examining its properties and characterization. 

Additionally, Shakil et al., (2021) investigated the properties of the Burr (4P) distribution, while Shakil et al., (2021) conducted inference 

studies on the Dagum (4P) distribution. A new (T-Xθ)family of distributions properties, discretization and estimation with applications is 

discussed by Mandouh et al., (2024). 

A new distribution, the Log-Dagum Singh Maddala distribution is proposed by combining the Singh Maddala distribution and the Log-

Dagum distribution. This compounding model offers a more flexible and robust framework for data analysis leveraging the strengths of 

both distributions. Unlike a straightforward extension this composition creates a new distribution that harnesses the benefits of both models 

providing a valuable tool for complex data sets. The Transformed-Transformer (T-X) method introduced by Cordeiro et al., (2013) has 
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emerged as a key technique for generalizing distributions widely adopted by researchers. This approach has led to the creation of diverse 

continuous distribution families significantly expanding statistical modeling capabilities. 

Consider a probability density function s(t) defined on [a, b]. Let W[G(x)] be a function of the cumulative distribution function. The {T-

X} family introduced by Alzaatreh et al., (2013) has a cumulative distribution function of the form: 

 

F(x) = ∫ s(t)dt 
W[G(x)

0
,                                                                                                                                                                                  (1) 

 

Where W[G(x)] satisfies the following conditions 

 

i) W[G(x)] Є [u;  v];  
ii) W[G(x)] Is differentiable and monotonically non-decreasing, and  

iii) W[G(x)] → u as x → −∞ and W [G(x)]  ∈  v as x → ∞  

The pdf can be obtained by differentiating equation (1). 

 

f(x) = {
d

dx
W[G(x)]} s{W[G(x)]}. 

2. The log dagum singh maddala distribution 

The main purpose of this article is to introduce a new family of distributions called the log Dagum Singh Maddala family of distributions 

that are more adaptable to data in a wide range of applications. 

The log Dagum distribution has random variable T its cumulative and probability density function is define as  

 

π(t) = (1 + ⅇ−λx)−β, t ∈ R, β >  0, λ >  0 ,                                                                                                                                                  (2) 

 

s(t) = βλ ⅇ−λx(1 + ⅇ−λx)−β−1, t ∈ R, β >  0, λ > 0,                                                                                                                                    (3) 

 

Let G(x) be the baseline cdf by replacing W[G(x)] by log(
G(x)

1−G(x)
) and s(t) with (3) in (1).  

The cdf and pdf of the log Dagum-x family is identifying as  

 

F(x) = [1 + (
G(x)

1−G(x)
)
−λ

]
−β

,                                                                                                                                                                          (4) 

 

And 

 

f(x) = [1 + (
G(x)

1−G(x)
)
−λ

]
−β−1

(
G(x)

1−G(x)
)
−λ−1 λ β g(x)

[1−G(x)]2
 ,                                                                                                                                  (5) 

 

The cumulative and probability density function are obtained by using (4) and (5) as 

 

F(x) = [1 + [(1 + xc)k − 1 ]
−λ
]
−β

,                                                                                                                                                             (6) 

 

And 

 

f(x) = [1 + [(1 + xc)k − 1 ]
−λ
]
−β−1

x−1+c(1 + xc)−1+k(−1 + (1 + xc)k)−1−λβλck.                                                                              (7) 

 

  
Fig. 1: Density Plot of LDSMD. 

 

The density functions of the Log-Dagum Singh Maddala (LDSM) distribution are illustrated in figure 1 which reveals that the density 

function decreases as λ increases while holdingβ, C and K constant. However, when β is varied while keeping λ fixed the shape of the curve 

changes with the density function exhibiting a right-skewed nature as C and K decrease. 

Sub-models 
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1) When c = −δ, k = −α, λ =  −φ, β = −θ we get the cdf of exponentiated 

 

Kumaraswamy III 

 

F(x) = [1 − [1 − (1 + x−δ)
−α
 ]
φ
]
θ

 for α, δ >  0 and x >  0, 

 

2) When c = −δ, k = −α, λ =  −φ, β = −1 we get the cdf of Kumaraswamy-Burr III 

 

F(x) = 1 − [1 − (1 + x−δ)
−α
 ]
φ

 for α, δ >  0 and x >  0, 

 

3) When c = −δ, k = −α, λ = β = −1 we get the cdf of Burr III distribution. 

 

F(x) = (1 + x−δ)
−α

 for α, δ >  0 and x >  0. 

3. Mathematical properties of the LDSM distribution 

The properties of the LDSM distribution are observed and considered. These properties are essential when the distribution is applying to 

real life data. 

3.1. Survival function 

The survival function associated with LDSMD is define as  

 

S(x) = 1 − G(x),  
 

S(x) = 1 − [1 + [(1 + xc)k − 1 ]
−λ
]
−β

, 

 

  
Fig. 2: Survival Plots of LDSM. 

 

For different values of parameter the graph of survival function increases then abruptly starts steadily decreases and converges to zero. 

3.2. Hazard function 

The hazard function of LDSMD is specified by 

 

h(x) =
[1+[(1+xc)k−1 ]

−λ
]
−β−1

x−1+c(1+xc)−1+k(−1+(1+xc)k)
−1−λ

βλck

1−[1+[(1+xc)k−1 ]−λ]
−β , 

 

  
Fig. 3: Hazard Plot of LDSMD. 
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Figure 3 shows that for different values of parameters the hazard function is increasing, decreasing and bathtub shapes. 

3.3. Nature of hazard function 

We can describe analytically the shape of the density function as: 

 

 
d

dx
[
[1+[(1+xc)k−1 ]

−λ
]
−β−1

x−1+c(1+xc)−1+k(−1+(1+xc)k)
−1−λ

βλck

1−[1+[(1+xc)k−1 ]−λ]
−β ] = 0.                                                                                                              (12) 

 

There might be more than one root 

3.4. Concavity 

The concavity of the (hazard rate function) is defined as h′′(x)= 0 

 

d2

dx2
 [
[1+[(1+xc)k−1 ]

−λ
]
−β−1

x−1+c(1+xc)−1+k(−1+(1+xc)k)
−1−λ

βλck

1−[1+[(1+xc)k−1 ]−λ]
−β ] = 0  

 

For the different values of parameter hazard function is concave down and concave up where the concavity is change that point is called 

point of inflection.  

4. Quantile points 

The quantile points of LDW distribution are computed by numerically for different sets of value of the parameters as provided in table 

below by solving the equation  

 

x = Q = [( (u
−
1

β − 1)
−λ

+ 1)

1

k

− 1]

1/c

,   

 
Table 1: Quantile Points of the LDSM Distribution 

Parameters  0.75 0.80 0.85 0.90 0.95 0.99 

C = 1, k = 1, β=0.2, λ = 0.5 Qu 0.24428 0.34683 0.49511 0.731669 1.22153 3.07543 

C = 2, k = 0.2, β=0.2, λ = 0.1 Qu 0.88619 1.45393 2.82083 8.47264 96.1237 6678.9 

C = 2, k = 0.1, β=0.2, λ = 0.2 Qu 18.4398 22.6082 28.5979 38.5418 61.4492 175.066 

C = 2, k = 2,β=0.1, λ = 2 Qu 0.042177 0.084905 0.172068 0.366441 0.892319 2.91736 

C = 1, k = 1, β=0.1, λ = 1 Qu 0.059674 0.12029 0.245135 0.53534 1.49213 9.45829 

C = 3, k = 3, β=0.5, λ = 2 Qu 0.727075 0.847329 0.993758 1.18797 1.50746 2.31696 

5. Characterization 

In this section for various method of characterization of probability distribution we present some characterization results of the LDSM (4P) 

distribution. We refer to Ahsanullah (2013a) and references therein 

5.1. Characterization via truncated moments 

Characterize the Log Dagum Singh Mandela (4P) distribution in following theorems. 

Preposition 1. 

Suppose that Y is absolutely continuous random variable and has cdf F(y) with 

 

F(0)  =  0, F(y)  >  0, ∀ y >  0, p.d.f f(y)  =  F′(y),  
 

Then 

 

E[Y |Y ≥  y] =  u(y)h(y), y >  0, 

 

And where 

 

h(y) =
f(y)

1−F(y)
, 

 

u(y) =
y(1−[1+[(1+xc)k−1 ]

−λ
]
−β

 +∫ (1−[1+[(1+tc)k−1 ]
−λ
]
−β

dt
y

0

[1+[(1+xc)k−1 ]−λ]
−β−1

x−1+c(1+xc)−1+k(−1+(1+xc)k)−1−λβλck
 . 

 

Proof given in appendix 

 

Proposition 2. 
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Suppose the random variable Y is absolutely continuous and has cdf F(y) with 

 

F(0)  =  0, F(y)  >  0, ∀ y >  0, p.d.f f(y)  =  F′(y), 
 

Then 

 

E[Y|Y ≥  y] =  s(y)h(y), y >  0,  
 

Where, h(y) =
f(y)

1−F(y)
 , 

 

s(y) =
y(1−[1+[(1+xc)k−1 ]

−λ
]
−β

 +∫ (1−[1+[(1+tc)k−1 ]
−λ
]
−β

dt
∞

y

[1+[(1+xc)k−1 ]−λ]
−β−1

x−1+c(1+xc)−1+k(−1+(1+xc)k)−1−λβλck
  

 

Proof given in appendix 

5.2. Characterization via order statistics 

Proposition 3: If τ1, τ2, … , τn be the n  independent copies of the random variable τ with F(τ) absolutely continuous distribution function and f(τ) 

pdf and if the corresponding order statistics τ1,n  ≤ τ2,n ≤ ⋯ ≤ τn,n , then it is identified from Arnold et al., (2005) chapter 2, or Ahsanullah et al., 

(2013a), chapter 5, that τj,n/ τk,n = τ, for 1 ≤ k < j ≤ n, is distributed as the ( )j k th−  order statistics from random variable V from the independ-

ent observations having the pdf fV(v/τ) where fV (
v

τ
) =

f(v)

1−F(τ)
 , 0≤ v < x, and τi,n/ τk,n = τ, for 1 ≤ k < i ≤ n, is distributed as ith  order sta-

tistics from k  independent observations from the random variable W  having the pdf fW(w/τ)where fW(w/τ) =
f(w)

F(τ)
 , w < τ. fW(w/τ) =

f(w)

F(τ)
 , w < τ.  

 

Let Sk−1 =
1

 k−1
(τ1,n + τ2,n +⋯+ τk−1,n) and Tk,n =

1

 n−k
(τk+1,n + τk+2,n +⋯+ τn,n). 

 

Theorem: Let τ be the absolutely continuous the random variable with the cumulative and probability density function 𝐹(𝜏) and 𝑓(𝜏). we suppose 

that 𝜔 = 𝑖𝑛𝑓{𝜏/𝐹(𝜏) > 0} and 𝛿 = 𝑠𝑢𝑝{𝜏/ 𝐹(𝜏) < 1} . We also suppose that 𝐸(𝜏) exists 𝑓(𝜏) is a differentiable for all 𝜏. Taking 0 = and 

 = , we have 𝐸(𝑆𝑘−1/𝜏𝑘,𝑛  = 𝜏)  = ℎ(𝜏)𝑚(𝜏), where ℎ(𝜏) and ℎ(𝜏) are respectively given by the expressions in Proposition 1, if and only if 

𝑋 has the pdf (9). 

 

Proof: It is known thatE(Sk−1/τk,n  = τ) =  E(τ/τ ≤ τ). See David and Nagaraja (2003) and Ahsanullah et al. (1995). Hence, by proposi-

tion 1, the result follows. 

 

Proposition 4. Suppose absolutely continuous random variable τ with the CDF F(τ) and the PDF f(τ)
 
suppose that 0 = and  = . We 

also suppose that E(τ) exists and f(τ) is a differentiable for all τ. Then E(Tk,n/τk,n  = τ)  = s(τ)h(τ), where s(τ) and h(τ) are respec-

tively given by the expressions in Proposition 2, if and only if τ has the pdf (9). 

 

Proof: Since E(Tk,n/τk,n  = τ)  = E(τ/τ ≥ τ), see David and Nagaraja (2003) and Ahsanullah et al. (1995) the result follows from Propo-

sition 2. 

5.3. Characterization via upper record values 

Proposition 5: Consider a sequence of absolutely continuous random variable of independent and identically distributed distribution func-

tion F(τ) and f(τ). 

If τn = (τ1, τ2, . . . τn) for 1n and τ >, j > 1, then τj is termed an upper record value of {τn, n ≥ 1}. The indices at which the upper 

records occur are given by the record times {U(n) > min (j\j > U(n + 1), τj > τU(n−1), n > 1)  and ( )1 1U =  . Let τ(n) = τU(n)  is de-

noted by nth upper record value.  

 

Theorem: Now, we assume that the random variable 𝑌 is absolutely continuous with the CDF 𝐹(𝜏) and the PDF 𝑓(𝜏). We suppose that 

0 = and  = . also we suppose that 𝐸(𝜏) exists and 𝑓(𝜏) is differentiable for all 𝜏. Then 𝐸(𝜏(𝑛 + 1)\𝜏(𝑛) = 𝜏) = 𝑠(𝜏)ℎ(𝜏), where 

𝑠(𝜏) and ℎ(𝜏) are respectively given by the expressions in Proposition 2, if and only if 𝜏 has the pdf (9). 

 

Proof: E(τ(n + 1)\τ(n) = τ) = E(τ\τ ≥ τ) and it is recognized from Nevzorov (2001) and Ahsanullah et al., (1995).Then, from proposi-

tion 2 the result follows. 

6. Order statistic 

The probability density function of the jth order statistic is given by 

 

 fj,n(x) =
nᴉ

(j−1)(n−j)ᴉ
[F(x)]j−1[1 − F(x)]n−jf(x),                                                                                                                                         (17) 
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The pdf of the jth order statistics for size n random sample from the LDSM distribution is, yet, specified as follows 

 

 fj,n(x) =
nᴉ

(n−j)(j−1)ᴉ
[[1 + [(1 + xc)k − 1 ]

−λ
]
−β

]

j−1

×  

 

[1 − [1 + [(1 + xc)k − 1 ]
−λ
]
−β

]

n−j

[1 + [(1 + xc)k − 1 ]
−λ
]
−β−1

×  

 

(1 + xc)−1+k(−1 + (1 + xc)k)−1−λx−1+cβλck , 

 

So, by substituting j = 1 we obtained the pdf of minimum order statistics  

 

 f1,n(x) =
nᴉ

(n−1)ᴉ
[1 − [1 + [(1 + xc)k − 1 ]

−λ
]
−β

]

n−1

×  

 

[1 + [(1 + xc)k − 1 ]
−λ
]
−β−1

x−1+c(1 + xc)−1+k(−1 + (1 + xc)k)−1−λβλck, 

 

Pdf of maximum order statistics is obtained by substituting j = n in above equation  

 

fn,n(x) =
nᴉ

(j−1)ᴉ
[[1 + [(1 + xc)k − 1 ]

−λ
]
−β

]

n−1

[1 + [(1 + xc)k − 1 ]
−λ
]
−β−1

  

 

  ×  x−1+c(1 + xc)−1+k(−1 + (1 + xc)k)−1−λβλck.  

7. Application study 

7.1. Maximum likelihood estimation 

The maximum likelihood estimation method is widely used for parameter estimation. The total log-likelihood function for the LDSM 

distribution is 

L(c, k, λ, β) = βn∏ (1 + ((1 + xc)k − 1)−λ)
−β−1

λn ×n
i=1   

 

 ∏ ((1 + xc)k − 1)−λ−1kn∏ (1 + xc)k−1cn∏ xc−1n
i=1

n
i=1

n
i=1 , 

 

L(c, k, λ, β) = nln[c] + nln[k] + nln[λ] + nln[β] − (β + 1) ×  

 

∑ ln [1 + ((1 + xi
c)k − 1)

−λ
]

n

i=1
− (λ + 1)∑ ln[(1 + xi

c)k − 1]
n

i=1
  

 

+ (k − 1)∑ ln[1 + xi
c]n

i=1 + (c − 1) , 
 

Taking first derivative of the log-likelihood function with respect to parameters given as follow 

 

 
δL

δc
=

n

c
+∑ Log[xi]

n

i=1
+ (−1 + k)∑

Log[xi]xi
c

1+xi
c

n

i=1
 − (1 + λ)∑

kLog[xi]xi
c(1+xi

c)−1+k

−1+(1+xi
c)
k

n

i=1

− (1 +

β)∑ −
kλLog[xi]xi

c(1+xi
c)−1+k(−1+(1+xi

c)k)
−1−λ

1+(−1+(1+xi
c)
k
)
−λ

n

i=1

  

 

 
δL

δk
=

n

k
+∑ Log[1 + xi

c] − (+λ)∑
Log[1+xi

c](1+xj
c)
k

−1+(1+xi
c)
k − n

i=1

n

i=1

  

 

(1 + β)∑ −
λLog[1+xi

c](1+xi
c)k(−1+(1+xi

c)k)
−1−λ

1+(−1+(1+xi
c)
k
)
−λ

n
i=1 ,  

 

δL

δβ
=

n

β
−∑ Log [1 + (−1 + (1 + xi

c)k)
−λ
]

n

i=1
  

 
δL

δλ
=

n

λ
−∑ Log[−1 + (1 + xi

c)k]
n

i=1
−  

 

(1 + β)∑ −
Log[−1+(1+xi

c)k](−1+(1+xi
c)k)−λ

1+(−1+(1+xi
c)k)−λ

n
i=1 . 
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We can get the estimates of the unknown parameters by equating equations to zero and solving them numerically. 

8. Simulation study 

In simulation study, we generated random variables in proposed model with value of four different parameters for sample size n= {25, 50, 

100}. 

By maximum likelihood method parameters are estimated with using each generated random variable, these estimated parameters are used 

for the MSE and Bias of LDSMD. Computational software “Mathematica” is used for all simulation. In table 2 and 3 results are reported. 

 
Table 2: For the Data Leukaemia-Free Survival Times of 50 Patients MSE and Average Mean of Bias 

n Bias(c ̂) Bias(k ̂)  Bias(λ̂) Bias(β̂) MSE(c ̂) MSE(k̂) MSE(λ̂) MSE(β̂) 

25 0.5890 0.9572 −72.2842 2.5964 1.6950 0.2038 30665.88 2.8494 

50 0.4387 0.6156 −52.0084 1.6717 0.5313 5.0934 21187.27 1.4248 

100 0.4123 0.4116 −49.1837 1.4401 0.4005 0.1907 21448.53 1.4035 

 
Table 3: For the Data of Failure of Eighteen Electronic Devices MSE Values and Average Mean of Bias 

n Bias(c ̂) Bias(k ̂) Bias(λ̂) Bias(β̂) MSE(c ̂) MSE(k̂) MSE(λ̂) MSE(β̂) 

25 -1.4559 0.50777 −1.38894 7.70205 2.24302 0.29178 17252.54 6.60165 

50 −1.3468 0.43116 −1.38893 2.20285 2.14764 0.21054 17252.53 4.72285 

100 -1.21219 0.33369 −1.29788 1.07593 1.64885 0.13929 774.67745 3.18139 

9. Comparative analysis of the log-dagum singh maddala distribution 

We evaluated the effectiveness of the Log-Dagum Singh Maddala (LDSM) distribution by comparing it with seven other distributions 

using three data sets. Our analysis employed four goodness-of-fit test statistics: Cramér-von Mises (CVM), Anderson-Darling (AD), Kol-

mogorov-Smirnov (K-S), and p-values. All calculations are performed using the computational software Mathematica, ensuring precise 

and efficient computations. The results demonstrate the superior fit of the LDSM distribution in all three data sets, confirming its versatility 

and reliability in modeling real-world phenomena. The LDSM distribution outperformed the other distributions in terms of goodness-of-

fit test statistics, highlighting its effectiveness in capturing the underlying data patterns. 

 
Data 1: This Data Set Consists of 50 Patient’s Leukaemia-Free Survival Time with Autologous Transplant Presented Below 

0.030 0.493 0.855 1.184 1.283 1.480 1.776 2.138 2.500 2.763 

2.993 3.224 3.421 4.178 4.441 5.691 5.855 6.941 6.941 7.993 

8.882 8.882 9.145 11.480 11.513 12.105 12.796 12.993 13.849 16.612 
17.138 20.066 20.329 22.368 26.776 28.717 28.717 32.928 33.783 34.211 

34.770 39.539 41.118 45.033 46.053 46.941 48.289 57.401 58.322 60.625 

 
Table 4: For the Data Set 1 (AD), (CVM) the (K-S) Statistics and P-Values 

Distributions A∗ W∗  K-S p-value 

LDSMD 0.15444 0.01792 0.05671 0.99709 

SMD 4.8874 0.93761 0.22769 0.01120 

LDWD 0.40399 0.06517 0.07695 0.94357 

GD 0.36998 0.04963 0.08476 0.86513 
WD 0.41154 0.056242 0.08685 0.84501 

LD 2.50484 0.37995 0.19666 0.04182 

NEED 0.66609 0.09625 0.09064 0.80595 

EED 0.36283 0.04839 0.08444 0.86817 

 
Table 5: For Data Set 1, Information Criteria of Different Distributions 

Distributions AIC AICC BIC HQIC CAIC 

LDSMD 392.112 393.001 399.760 395.025 393.001 

SMD 435.348 435.602 439.171 436.803 435.602 

LDWD 394.682 395.140 398.235 396.37 395.140 

GD 395.057 395.312 398.881 396.51 395.312 

WD 395.433 395.689 399.257 396.89 395.689 

LD 394.783 395.304 400.519 396.97 395.304 

NEED 396.045 396.301 399.869  397.50 396.301 

EED 394.954 395.209 398.778 396.41 395.209 

 
Data 2: This Data Set Consists Eighteen Electronic Devices Times to Failure 

5 11 21 31 46 75 98 122 145 

165 196 224 245 293 321 330 350 420 

 
Table 6: For the Data Set 2 (AD), (CVM), the (K-S) Statistics and P-Values 

Distributions A∗ W∗ K-S p − valuⅇ 
LDSMD 0.2622 0.0405 0.1015 0.9925 
SMD 4.6864 0.9375 0.9121 0.0143 
LDWD 0.1725 0.0236 0.0840 0.9996 
GD 0.4487 0.0699 0.1206 0.9561 
WD 0.4609 0.0644 0.1132 0.9752 
LD 28.2328 5.0981 0.9157 1.54817 × 10−13 
NEED 2.4695 0.4826 0.2814 0.1155 
EED 0.4456 0.0708 0.1214 0.9535 
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Table 7: Information Criteria for Data 2 

Model AIC BIC HQIC AICC CAIC 

LDSMD 225.340 228.902 225.832 228.418 228.418 
SMD 266.104 269.665 266.595 269.181 269.181 
LDWD 208.29 210.963 208.659 210.006 210.006 
WD 395.43 397.214 395.679 396.233 396.233 
GD 226.1 227.9 226.9 229.9 229.9 
NEED 237.86 239.640 238.105 238.660 238.660 
LD 341.41 343.196 341.661 342.215 342.215 
EED 225.253 227.034 225.49 226.053 226.053 

 
Data 3: This Data Consist Breaking Stress of Carbon Fibres for 100 Uncensored Data 

0.39 0.81 0.85 0.98 1.08 1.12 1.17 1.18 1.22 1.25 

1.36 1.41 1.47 1.57 1.57 1.59 1.59 1.61 1.61 1.69 

1.69 1.71 1.73 1.8 1.84 1.84 1.87 1.89 1.92 2 
2.03 2.03 2.05 2.12 2.17 2.17 2.17 2.35 2.38 2.41 

2.43 2.48 2.48 2.5 2.53 2.55 2.55 2.56 2.59 2.67 

2.73 2.74 2.76 2.77 2.79 2.81 2.81 2.82 2.83 2.85 

2.87 2.88 2.93 2.95 2.96 2.97 2.97 2.9 3.09 3.11 

3.11 3.15 3.15 3.19 3.19 3.22 3.22 3.27 3.28 3.31 

3.31 3.33 3.39 3.39 3.51 3.56 3.6 3.65 3.68 3.68 
3.7 3.75 4.2 4.38 4.42 4.7 4.9 4.91 5.08 5.56 

 
Table 8: For the Data Set 3 (AD), (CVM), the (K-S) Statistics and P-Values 

Distributions  A ∗ W ∗ K-S p-value 

LDSMD 0.2799 0.0438 0.0553 0.9195 
SMD 4.8874 0.9376 0.2277 0.0112 
LDWD 0.3967 0.0650 0.0618 0.839 
GD 200.5016 32.9885 0.9996 2.2204× 10−16 
WD 18.9521 3.7772 0.3341 4.0284× 10−10 
LD 79.3018 17.3623 0.8210 -2.2204× 10−16 
NEED 16.9307 3.3516 0.3170 3.7314× 10−9 
EED 1.2341 0.2303 0.1077 0.1962 

 
Table 9: Information Criteria for Data Set 3 

Model AIC BIC AICC HQIC CAIC 

LDSMD 289.708 300.129 290.129 293.925 290.129 
SMD 382.967 386.791 383.222 384.423 383.222 
LDWD 288.62 296.43 288.869 296.488 296.4880 
WD 289.06 296.87 289.309 292.222 289.309 
 GD 290.467 295.678 290.591 292.576 290.591 
NEED 393.847 399.058 393.971 395.956 393.971 
LD 474.087 477.911 474.343 475.544 474.343 
EED 296.365 301.57 296.488 298.473 296.488 

 

To evaluate the goodness of fit, various criteria are employed to compare the fitted models. Generally, smaller values indicate a better fit 

to the data. In this study, we utilized Mathematica 11.0 for all computational tasks, ensuring precise and efficient calculations. 

Tables 4-9 show that the Log-Dagum Singh Maddala (LDSM) model yields higher p-values, indicating a better fit compared to other 

distributions (SM, LDWD, WD, GD, LD, EED and NEED) for the estimated parameters. To visualize the fit, the probability density 

functions (pdfs) of the distributions are superimposed on the histograms of the three data sets, as shown in figures 4-6. These plots provide 

a visual confirmation of the LDSM model's superior fit, demonstrating its ability to accurately capture the characteristics of the data. 

 
Fig. 4: Fitted Densities for Data 1. 
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Fig. 5: Fitted Densities for Data 2. 

 

 
Fig. 6: Fitted Densities for Data 3. 

10. Conclusion 

This paper explores the Log-Dagum Singh Maddala (LDSM) distribution a 4-parameter extension of the traditional distributions. We 

thoroughly investigate the LDSM distribution deriving its statistical properties, parameter estimation methods, quantile points and 

characterizations. The practical applicability of the LDSM distribution is demonstrated through three real -life datasets, showcasing its 

superior fit compared to established distributions like Singh Maddala, Weibull, Log-Dagum Weibull, Lomax, Gamma, Exponentiated 

Exponential, and Nadarajah Exponentiated Exponential. Our findings indicate that the LDSM distribution is a versatile and rel iable 

model for various fields including theoretical and applied sciences, engineering, hydrology, survival analysis, lifetime data and eco-

nomics. We anticipate that our results will be valuable to researchers and practitioners seeking accurate and robust statisti cal modeling 

solutions. 
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Appendix 

Proof preposition 1: 

 

𝐸[𝑌 |𝑌 ≥  𝑦] =
1

1−𝐹(𝑦)
∫ 𝑠𝑓(𝑠)𝑑𝑠
𝑦

0
 , 𝑢(𝑦)𝑓(𝑦) = ∫ 𝑠𝑓(𝑠)𝑑𝑠

𝑦

0
  

 

𝑢(𝑦) =
∫ 𝑠𝑓(𝑠)𝑑𝑠
𝑦

0

𝑓(𝑦)
 = 

𝑦(1−𝐹(𝑦)+∫ (1−𝐹(𝑠))𝑑𝑠
𝑦

0

𝑓(𝑦)
  

 

Putting (2) and (1) then it is simply seen that 

 

𝑢(𝑦) =
𝑦(1−[1+[(1+𝑥𝑐)𝑘−1 ]

−𝜆
]
−𝛽

 +∫ (1−[1+[(1+𝑡𝑐)𝑘−1 ]
−𝜆
]
−𝛽

ds
𝑦

0

[1+[(1+𝑥𝑐)𝑘−1 ]−𝜆]
−𝛽−1

𝑥−1+𝑐(1+𝑥𝑐)−1+𝑘(−1+(1+𝑥𝑐)𝑘)−1−𝜆𝛽𝜆𝑐𝑘
  

 

Simple differentiation and simplification gives 𝑢0(𝑦)  =  −𝑦 −  𝐴(𝑦)𝑢(𝑦),  
Where 

 

𝐴(𝑦) =
𝑓˴(𝑦)

𝑓(𝑦)
=

𝛽λck(1+𝑥𝑐)−1+𝑘(−1+(1+𝑥𝑐)𝑘)
−1−𝜆

(1+(−1+(1+𝑥𝑐)𝑘)
−𝜆
)
−1−𝛽

[𝑐(−1+𝑘)kx−2+2𝑐(1+𝑥𝑐)−1+(−1+𝑐)𝑥−2+𝑐+𝑐𝑘𝑥−2+2𝑐(1+𝑥𝑐)−1+𝑘

(−1+(1+𝑥𝑐)𝑘)
−1
(−1−𝜆)−𝑐𝑘𝑥−2+2𝑐(1+𝑥𝑐)−1+𝑘(−1+(1+𝑥𝑐)𝑘)

−1−𝜆
(1+(−1+(1+𝑥𝑐)𝑘)−𝜆)−1(−1−𝛽)𝜆]

[1+[(1+𝑥𝑐)𝑘−1 ]−𝜆]
−𝛽−1

𝑥−1+𝑐(1+𝑥𝑐)−1+𝑘(−1+(1+𝑥𝑐)𝑘)−1−𝜆𝛽𝜆𝑐𝑘
  

 

From which we obtain  

 

−𝑦+𝑢˴(𝑦)

𝑢(𝑦)
=

{
 
 

 
 

 

𝛽λck(1+𝑥𝑐)−1+𝑘(−1+(1+𝑥𝑐)𝑘)
−1−𝜆

(1+(−1+(1+𝑥𝑐)𝑘)
−𝜆
)
−1−𝛽

[𝑐(−1+𝑘)kx−2+2𝑐(1+𝑥𝑐)−1+(−1+𝑐)𝑥−2+𝑐+

𝑐𝑘𝑥−2+2𝑐(1+𝑥𝑐)−1+𝑘(−1+(1+𝑥𝑐)𝑘)
−1
(−1−𝜆)−𝑐𝑘𝑥−2+2𝑐(1+𝑥𝑐)−1+𝑘(−1+(1+𝑥𝑐)𝑘)

−1−𝜆
(1+(−1+(1+𝑥𝑐)𝑘)−𝜆)−1(−1−𝛽)𝜆]

[1+[(1+𝑥𝑐)𝑘−1 ]−𝜆]
−𝛽−1

𝑥−1+𝑐(1+𝑥𝑐)−1+𝑘(−1+(1+𝑥𝑐)𝑘)−1−𝜆𝛽𝜆𝑐𝑘

}
 
 

 
 

  

 

We have 

 
𝑓˴(𝑦)

𝑓(𝑦)
=

−𝑦+𝑢˴(𝑦)

𝑢(𝑦)
  

 

It follows that 

 

𝑓˴(𝑦)

𝑓(𝑦)
= 

{
 
 

 
 

 

𝛽λck(1+𝑥𝑐)−1+𝑘(−1+(1+𝑥𝑐)𝑘)
−1−𝜆

(1+(−1+(1+𝑥𝑐)𝑘)
−𝜆
)
−1−𝛽

[𝑐(−1+𝑘)kx−2+2𝑐(1+𝑥𝑐)−1+(−1+𝑐)𝑥−2+𝑐+𝑐𝑘𝑥−2+2𝑐

(1+𝑥𝑐)−1+𝑘(−1+(1+𝑥𝑐)𝑘)
−1
(−1−𝜆)−𝑐𝑘𝑥−2+2𝑐(1+𝑥𝑐)−1+𝑘(−1+(1+𝑥𝑐)𝑘)

−1−𝜆
(1+(−1+(1+𝑥𝑐)𝑘)−𝜆)−1(−1−𝛽)𝜆]

[1+[(1+𝑥𝑐)𝑘−1 ]−𝜆]
−𝛽−1

𝑥−1+𝑐(1+𝑥𝑐)−1+𝑘(−1+(1+𝑥𝑐)𝑘)−1−𝜆𝛽𝜆𝑐𝑘

}
 
 

 
 

 

 

Integrating with respect to ’𝑦’ and after simplifying we obtain 

 

𝑙𝑛𝑓(𝑦) = ln [𝐶[1 + [(1 + 𝑥𝑐)𝑘 − 1 ]−𝜆]
−𝛽−1

𝑥−1+𝑐(1 + 𝑥𝑐)−1+𝑘(−1 + (1 + 𝑥𝑐)𝑘)−1−𝜆𝛽𝜆𝑐𝑘  

 

Since C is determined by ∫ 𝑓(𝑦)
𝑦

0
 ) = 1, we get the pdf. 

 

Proof preposition 2: 
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𝐸[𝑌|𝑌 ≥  𝑦] =

1

1−𝐹(𝑦)
∫ 𝑡𝑓(𝑡)𝑑𝑡
∞

𝑦
 , 𝑓(𝑦)𝑠(𝑦) = ∫ 𝑡𝑓(𝑡)𝑑𝑡

∞

𝑦
 ,   

 

𝑠(𝑦) =  
∫ 𝑡𝑓(𝑡)𝑑𝑡
∞

𝑦
 

𝑓(𝑦)
 = 

𝑦(1−𝐹(𝑦)+∫ (1−𝐹(𝑡))𝑑𝑡
∞

𝑦

𝑓(𝑦)
, 

 

Substituting (8) and (9). Then it is easily seen that 

 

𝑠(𝑦) =
𝑦(1−[1+[(1+𝑥𝑐)𝑘−1 ]

−𝜆
]
−𝛽

 +∫ (1−[1+[(1+𝑡𝑐)𝑘−1 ]
−𝜆
]
−𝛽

dt
∞

y

[1+[(1+𝑥𝑐)𝑘−1 ]−𝜆]
−𝛽−1

𝑥−1+𝑐(1+𝑥𝑐)−1+𝑘(−1+(1+𝑥𝑐)𝑘)−1−𝜆𝛽𝜆𝑐𝑘
  

 

Simple differentiation and simplification gives 𝑠 ,(𝑦)  =  −𝑦 − 𝑠(𝑦)𝐴(𝑦), where 

 

𝐴(𝑦) =
𝑓˴(𝑦)

𝑓(𝑦)
=

𝛽λck(1+𝑥𝑐)−1+𝑘(−1+(1+𝑥𝑐)𝑘)
−1−𝜆

(1+(−1+(1+𝑥𝑐)𝑘)
−𝜆
)
−1−𝛽

[𝑐(−1+𝑘)kx−2+2𝑐(1+𝑥𝑐)−1+

(−1−𝜆)−𝑐𝑘𝑥−2+2𝑐(1+𝑥𝑐)−1+𝑘(−1+(1+𝑥𝑐)𝑘)
−1−𝜆

(1+(−1+(1+𝑥𝑐)𝑘)−𝜆)−1(−1−𝛽)𝜆]

[1+[(1+𝑥𝑐)𝑘−1 ]−𝜆]
−𝛽−1

𝑥−1+𝑐(1+𝑥𝑐)−1+𝑘(−1+(1+𝑥𝑐)𝑘)−1−𝜆𝛽𝜆𝑐𝑘
  

 

Then we 

From which we obtain 

 

−𝑦+𝑠˴(𝑦)

𝑠(𝑦)
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{
 
 
 

 
 
 𝛽λck(1+𝑥

𝑐)−1+𝑘(−1+(1+𝑥𝑐)𝑘)
−1−𝜆

(1+(−1+(1+𝑥𝑐)𝑘)
−𝜆
)
−1−𝛽

[𝑐(−1+𝑘)kx−2+2𝑐(1+𝑥𝑐)−1+

(−1+𝑐)𝑥−2+𝑐+𝑐𝑘𝑥−2+2𝑐(1+𝑥𝑐)−1+𝑘(−1+(1+𝑥𝑐)𝑘)
−1
(−1−𝜆)−𝑐𝑘𝑥−2+2𝑐(1+𝑥𝑐)−1+𝑘

(−1+(1+𝑥𝑐)𝑘)
−1−𝜆

(1+(−1+(1+𝑥𝑐)𝑘)−𝜆)−1(−1−𝛽)𝜆]

[1+[(1+𝑥𝑐)𝑘−1 ]−𝜆]
−𝛽−1

𝑥−1+𝑐(1+𝑥𝑐)−1+𝑘(−1+(1+𝑥𝑐)𝑘)−1−𝜆𝛽𝜆𝑐𝑘

}
 
 
 

 
 
 

  

 

We have 

 
𝑓˴(𝑦)

𝑓(𝑦)
=

−𝑦+𝑠˴(𝑦)

𝑠(𝑦)
  

 

It follows that 

 

 
 𝑓˴(𝑦)

𝑓(𝑦)
=

{
 
 
 
 

 
 
 
 𝛽λck(1+𝑥

𝑐)−1+𝑘(−1+(1+𝑥𝑐)𝑘)
−1−𝜆

(1+(−1+(1+𝑥𝑐)𝑘)
−𝜆
)
−1−𝛽

[𝑐(−1+𝑘)kx−2+2𝑐

(1+𝑥𝑐)−1+(−1+𝑐)𝑥−2+𝑐+𝑐𝑘𝑥−2+2𝑐(1+𝑥𝑐)−1+𝑘(−1+(1+𝑥𝑐)𝑘)
−1
(−1−𝜆)−

𝑐𝑘𝑥−2+2𝑐(1+𝑥𝑐)−1+𝑘(−1+(1+𝑥𝑐)𝑘)
−1−𝜆

(1+(−1+(1+𝑥𝑐)𝑘)−𝜆)−1(−1−𝛽)𝜆]

[1+[(1+𝑥𝑐)𝑘−1 ]−𝜆]
−𝛽−1

𝑥−1+𝑐(1+𝑥𝑐)−1+𝑘(−1+(1+𝑥𝑐)𝑘)−1−𝜆𝛽𝜆𝑐𝑘

}
 
 
 
 

 
 
 
 

  

 

Integrating with respect to ’y’ after simplification we get 

 

𝑙𝑛𝑓(𝑦) = ln [𝐶[1 + [(1 + 𝑥𝑐)𝑘 − 1 ]−𝜆]
−𝛽−1

𝑥−1+𝑐(1 + 𝑥𝑐)−1+𝑘(−1 + (1 + 𝑥𝑐)𝑘)−1−𝜆𝛽𝜆𝑐𝑘]  

 

Since C is determined by∫ 𝑓(𝑦)
∞

0
 ) = 1, we obtain the pdf 

 


