
 
Copyright © 2017 Dr. Fayyadh Abdulla Ali, Dr. Tareq Azeez Salih. This is an open access article distributed under the Creative Commons Attrib-

ution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

 

International Journal of Advanced Statistics and Probability, 5 (1) (2017) 37-43 
 

International Journal of Advanced Statistics and Probability 
 

Website: www.sciencepubco.com/index.php/IJASP  
doi: 10.14419/ijasp.v5i1.7258 

Research paper 
 

 

 

 

Analysis of semi-parametric single-index models by using 

MAVE-method based on some kernel functions 
 

Fayyadh Abdulla Ali 1*, Tareq Azeez Salih 2 

 
1 Asst. Prof – Statistic department. ,Administration and Economics college, Wasit university, Iraq 
2 Lecturer – Statistic deptartment. ,Administration and Economics college, Wasit university, Iraq 

*Corresponding author E-mail: 

 

 

Abstract 
 

In this paper, we used many forms of kernel functions with minimum average variance estimation (MAVE) method [Xia2002] we called 

the proposed methods (MAVE-Biweight), (MAVE-Epanechnikov ) and .(MAVE-Gaussian ) for estimation the parameters and the link 

function of the single – index model (SIM) comparing with other methods of estimation . to evaluate the performing of the various meth-

ods s simulation and a real data have been used, conclusions showed that the (MAVE- Gaussian) method in this paper gave better results 

compared with other methods depending on the mean squared error (MSE) and mean Absolute error (MAE) criterion for comparison. 
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1. Introduction 

SIMs are widely used in sciences of applied quantitative. SIMs 

looking for a single linear combination of Xs variables that can 

catch information on a relation between Y and X, to avoid the 

curse of dimension specifically the model (SIM) can be written as 

: 

 

Y =  g( XT β) + ∈                                                                        (1) 

 

E [Y |X = xi] =  E [Y |XTβ] =  P [Y |XTβ]  =  g( XTβ) 

 

Where E [∈  | X] =  E [∈  | XTβ]  =  0 almost surely, g( XT β) is 

unknown .link function and β is vector of parameters such that || β 

|| =1 or βTβ = 1 ,an,and the first component is positive for identifi-

cation model . Estimation of (SIM) is very important in theory and 

in practice, In the last years many papers [Tong , Li and 

Zhu(2002) ; Yu and .Ruppert (2002) ; Yin and cook ,(2005) ; De-

lecrax , Hristache and patilea (2006)] have investigated the estima-

tion of the parametric index β with focusing on root – n estimabil-

ity and efficiency issues . There are three type of methods have 

been proposed to estimate β in the literature ,the first one that 

include the average derivative estimation method [Hardel and 

Stoker , (1989)] , the structure adaptive method [Hristach et al, 

(2002)] and the outer product of gradients (OPG) method [Xia et 

al ,( 2002)], the second type contains methods that estimate g and 

β at same time whereas the third type used regressing X onY in-

stead of regressing Yon X and were originally suggested dealing 

with sufficient dimension reduction (SDR) .([`1 ] , [4] , [7] , [16]) . 

In This paper used the second type from methods it is MAVE 

method with some kernel functions (Biweight, Epanechnikov and 

Gaussian) to obtain three methods (MAVE – Biweight, MAVE– 

Epanechnikov and MAVE –Gaussian) for analysis the semi-

parametric single – index models. 

The objective of this paper is identify the best method based on 

the Two comparison criterion mean squared error (MSE) and 

mean absolute error (MAE). 

The reminder of this paper is arranged as follows. In section 2, a 

brief review with advantages of semi-parametric single index 

models and a brief explain for kernel functions with bandwidth 

parameter. MAVE method reviewed in section 3. A simulation 

studies are conducted under different setting and the real data and 

applications of methods are recorded at section 4 and at section 5 

the conclusions are summarized. 

2. The semi-parametric single –index model 

(SSIM) 

Most estimation problems contain both unknown. Finite – dimen-

sional parameter (β) and an unknown link function g (XT β). These 

kinds of models are. Called “semi-parametric”, the linearity as-

sumption XT β is still valid but no additional assumption is made 

related to the error term in other a specific link function is not 

assumed in the model.  

In statistic, the technique of regression analysis includes modeling 

and analysis many variables. it focus on the relationship between a 

dependent variable and one or more independent variables. More 

specifically regression analysis applied for estimating the condi-

tional expectation of the dependent variable given the independent 

variables.  

In multiple linear regression models, the conditional mean rela-

tionship between the response and each of the predictions is as-

sumed linear. The most flexible models do not make any assump-

tion about the form of the p-variate function. The problem is to fit 

a p-dimensional surface to the observed data {(𝑥iT, 𝑦i), i=1, 2… 

n}. An obvious approach is trying for generalizing the univariate 

smoothing techniques. There is a sveral problems appear called 

"curse of dimensionality". A popular way to beat the dimension-

ality problem is to first project all covariates on to a linear space 

spanned. by the covariates and then to fit a non-parametric curve. 

http://creativecommons.org/licenses/by/3.0/
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To their linear combinations .this is lead to the single – index 

model (SIM): 

𝑦i = g (𝑥i
T β) + ∈i , i = 1,2,…,n  

Where g(𝑥i
T β) is a smooth unknown function , 𝑥i is a p×1 vector 

of covariates , β = ( β1,β2 , … , βp)T is a p×1 vector of parameters 

and ∈i .white noise identical .independent normal distribution with 

unknown variance σ2 and mean zero.([6] ,[10],[13],[14]). 

2.1. The advantages of semi-parametric single – index 

model (SSIM) 

1) The semi-parametric single – index model can avoid the 

problem of .error distribution misspecification. 

2) The (SSIM) is more general than the .binary choice model. 

3) The response variable (Y) can be discrete or continuous in 

semi-parametric single – index model. 

4) The (SSIM) is an alternative approach .designed to mitigate 

effects arising from the curse of dimensionality.  

5) A single – index model dose not .assume that g (𝑥iT β) is 

known. And hence it is more flexible and. less restrictive 

than parametric models for conditional mean functions, 

such as linear models and binary probit models, use of a 

semi-parametric single – index model reduces the risk ob-

taining misleading results. 

6) A single – index model .avoids the curse of dimensionality 

because the index XT β aggregates the dimension of X . At 

the same time β  can be estimated with same rate of 

.convergence n−
1

2 that is achieved in a parametric model.  

7) in non- parametric estimation does not .permit extrapolation 

. it does not .provide predictions of E [ Y | X = x] at points x 

That are not provide in the support of X . this is a serious 

.draw back in policy analysis and forecasting. A semi-

parametric single –index model .by contrast permits extrap-

olation within limits it yields predictions of E [ Y | X =  x] at 

values of 𝑥 that .are not in the support of X but are in the 

support of XT β . ([4],[10],[11],[13])  

2.2. Kernel function selection 

In nonparametric functional estimation , the kernel function analy-

sis with different weight to each data point .the weights are de-

pending on the bandwidth and the estimator that are used the func-

tion k(.) is generally a symmetric probability density functions 

satisfied the conditions:  

1) ∫ k(u)du = 1
∞

−∞
 is pdf, A kernel function k(u) :R→R is any 

function which satisfies This condition . 

2) kernel function is symmetric, k(u) = k (-u)  

3) ∫ uk(u)du = 0
∞

−∞
 

4) ∫ u2k(u)du =
∞

−∞
 μ2(k) ≠ 0 , The moments of a kernel. 

5) k(u) ≥ 0 , Anon-negative kernel for all u when k(u) is a 

kernel function, commonly used kernel functions include 

the Gaussian, the Tricube, Uniform, Biweight, Cosine, Tri-

weight and Epanechnikove kernel function. Gaussian kernel 

, Biweight kernel and Epanechnikove kernel function are 

chosen .([2],[3],[11]) 

Common second-order kernels are listed in the following table. 

 
Table 1: Common Second-Order Kernels 

kernel Equation 

Uniform K(u) = 
1

2
 1(|u| ≤ 1) 

Epanechnikov K(u) = 
3

4
(1 − u2) 1(|u| ≤ 1) 

Biweight K(u) = 
15

16
(1 − u2)2 1(|u| ≤ 1) 

Triweight K(u) = 
35

32
(1 − u2)3 1(|u| ≤ 1) 

Gaussian K(u) =
1

√2π
exp ( 

−u2

2
 ) 1(|u| ≤ ∞) 

Tricube K(u) = 
70

81
(1 − |u|3)3 1(|u| ≤ 1) 

Cosine K(u) = 
π

4
 cos(  

π

2
u) 1(|u| ≤ 1) 

2.3. Bandwidth parameter selection 

The bandwidth parameter. also called the smooth parameter (h) , 

controls for the smoothing level of the estimation . (h) Plays very 

important turn at the performance for kernel estimators. different 

methods like the cross-validation, penalized functions, , bootstrap , 

etc.. have been developed to obtain the optimal bandwidths . The 

cross –validation method in general is preferred due to it is easier 

in computing and implementation .structure for any regression 

model the bandwidth value which minimizes the cross-validation 

(CV) function with a non-negative weight function w (XT β ) giv-

en as: 

 

CV (h) =  n−1 ∑  n
i=1 [Yi  −  g ̂−i 

 (Xi
T β̂)]

2
                                  (2) 

 

Is considered the optimal one. The (CV) function contains the 

leave-one-out kernel defined as follows. 

 

 ĝ−i(Xi
Tβ̂)  = 

∑  YiKh( Xi
T 

β̂− Xj
Tβ̂)n

i≠j

∑ Kh(Xi
Tβ̂− Xj

Tβ̂)n
i≠j

                                                 (3) 

 

It used to estimate our mean function, a Nadaraya - watson kernel 

smoothing. 

The leave-one-out estimator is obtained. by leaving out the obser-

vations 𝔦  
(The concerned observations 𝑥i and 𝑦i ) from. The data each time 

for satisfying. The unbiased estimate of the bandwidth parameter 

(h). The procedure is replicated (n) times. (For all observations). 

The final optimal bandwidth value. Required for the kernel esti-

mation .is the mean of all these values computed. The bandwidth 

that minimizes the cross-validation function also minimizes the 

MSE is a performance criterion of an estimator. ([2], [9], [12]). 3. 

3. Minimum average variance estimation 

(MAVE) method 

For estimation of single – index model E [ Y | X = x] =  g(XT β) 

proceed in two step:  

First, .the coefficient vector β has to estimation methods to calcu-

late the coefficients for discrete and continuous variables will be 

covered depthly later. 

Secondly , for estimation the unknown link function g(XT β) by 

non-parametrically regression the dependent variable Y on the 

fitting index XT β̂ where β̂ is the coefficient vector. we estimated 

the kernel estimator. [11] 

In (2002) Xia, Tong, Li and Zhu proposed a general estimation 

method termed minimum average variance estimation (MAVE) 

for semi-parametric models.  

Let {xi , yi ;  i = 1,2, . . . , n} be a random samples from model (1) 

the basic concept of our estimation method is to linearly approxi-

mation the smooth link function g(XT β) and estimation β by min-

imizing the overall approximation errors. The single – index mod-

el (1) is a special case of what they considered and we can esti-

mate it as follows. Assuming function g (XT β) and parameter β . 

Then the Taylor. expansion of g(𝑥i
T β) at g( x T β) is:  

 

g(xi
Tβ)  ≈  a +  b (xi − x )Tβ   

 

Where a =  g( x T β ) , b =  g/(x T β )  with fixed β the local 

estimator of conditional variance is:  

 

σn
2(x |β) =min{nf̂β

 (x) }−1  ∑ { Yi − {a + b ( Xi − x )Tn
i=1  β }2. kh 

{( Xi−x )Tβ}                                                                                 (4) 

  

 

Where f̂β
 (x)= n−1 ∑  kh{(x i − x )Tβ} n

i=1  where k is density func-

tion , h is the bandwidth and kh (u )= kh (u/h )/h. 
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σn

2(x |β) can also be understood, the best approximation minimize 

the overall departure at all x=𝑥𝑗 , 𝑗=1,2,…,n , Thus , β estimator is 

to minimize: 

 

Qn( β) =  ∑ σn
2(xj |β)n

i=1   

 

The basic algorithm. for estimation g(.) in the single – index mod-

el is based on observing that  

 

β = argmin E [ Y − g (XTβ )]2                                                    (5) 

 

 

Subject to βTβ = 1, by condition. on XTβ we see that (5) equals 

 

Eu σβ
2  (xTβ) where σβ

2(xTβ) = E [(Y – g(XTβ) )2 | XTβ = u ]  

 

Euσβ
2  (xT β) where σβ

2  (xT β)  =  E [ (Y –  g(XT β))
2

 | XTβ =  u]  

 

If follows that: 

 

E [Y – g (XTβ) ]2 = Eu σβ
2  (xTβ)  

 

Therefore, minimizing (5) is equivalent to:  

 

β = argmin Eu σβ
2  (xTβ)                                                              (6) 

 

 

The conditional expectation in (6) is now approximation by the 

sample analogue for xi  , we have the following local linear ap-

proximation.  

 

yi − g (xi
Tβ)  ≈  yi − g(xTβ) −  ǵ(xTβ). xij

T β  

 

Where xij = xi – xj .  

 

Following. The idea of local linear smoothing, we may estimate 

σβ
2  (xTβ) by: 

 

 σβ
2 (xTβ) = min ∑ { Yi − a − b n

i=1 Xij 
T β }2 . wi0                            (7) 

                    a ,b 

 

Here, wi0 ≥ 0 , 𝔦 = 1,2,...,n , are some weights. With ∑ wi0  = 1n
i=1  

,typically .centering at x . By (6) and (7) our estimation procedure 

is to minimize. 

 
1

n
∑ ∑  { Yi −  aj −  bj Xij

Tβ }2n
i=1

n
j=1  . wij n                                    (8) 

 

With .respect to (aj, bj) and β. if the kernel smoothing is used with 

kernel function k(u) and bandwidth (h) , Then the weight function 

: 

wij =  kh(Xij
T) , where wij =  

 kh(Xij
Tβ) 

∑ kh(Xij
Tβ)n

i=1

  

 

We call the estimation procedure. The Minimum Average Vari-

ance Estimation (MAVE) method. ([5], [8], [15], [16]). 

Our estimation procedure for β and g( x T β ) is described. in de-

tails as follows: 

Step (0): initialization step obtain an initial estimate of β, let 

β̂(0) be an estimator of the OLS method or arbitrary.  

Step (1): put β̂(0) = β and calculate the solution of (aj , bj). 

 

(
âj

 b̂j 
) = [ ∑ kh( Xij

Tβ) (
1

Xij
Tβ

h

)n
i=1  (

1
Xij

Tβ

h

)

T

]−1 ∑ kh
n
i=1  (Xij

Tβ) (
1

Xij
Tβ

h

) Yi 

 

Step (2): calculate  

 

β̂ = {∑ kh (Xij
Tβ)(b̂j)

2. Xij
n
i,j Xij

T} −1. ∑ kh
n
i,j ( Xij

Tβ)b̂j Xij( Yi − âj) }  

 

And  

 

β̂MAVE=sign ( β̂1) 
β̂

‖β̂‖
  

 

Step (3): Repeat step (1) and step (2) until the iteration process 

converges, the final vector β is The MAVE estimator for β̂(0) . 

Xia and Tong (2006) proved that the. estimator produced by the 

algorithm can a chive root – n consistency and has the same. as-

ymptotic distribution as the estimator of Hardle et al (1993)  

4. Numerical studies 

In This section we illustrate the performance of methods (MAVE-

Biweight, MAVE –Epanechnikov and MAVE-Gaussian ) by 

Three simulation studies and real data for Iraq stock exchange 

analysis based on (R-Package) . 

4.1. Simulation  

Experiment1. In this experiment we simulate 200 datasets consist-

ing of sample size n =  25,100 observation from the following 

model. 

 

Y =  sin (XTβ) +  ϵ  
 

Where X = (x1,x2,x3,x4,x5)T , β = (1,1,1,1,1)T/ √5 , x i are iid 

~N(0,  σ2) , ϵ ~ N(0,  1 ) and correlation between  xi and xj , is 

ρ|i−j| for i ,j =1 , 2 , 3 , 4, 5 . With two values of ρ were explored 

0.2 and 0.9 with ϵ and X are independent.  

Experiment 2 in this experiment we simulate 200 datasets consist-

ing of sample size n= 25,100 observation from the following mod-

el with homoscedastic errors. 

 

Y= 2sin (XT β) + exp (2XT β) + 0.5 ϵ  

 

Where X=(x1,x2,x3,x4,x5, x6)T  , β=(1,1,1,1,1,0)T/√5 , xi  are iid 

~N(0,  σ2) , ϵ ~ N(0,  1) and correlation between  xi and xj , is 

ρ|i−j| for i ,j =1 , 2 , 3 , 4, 5, 6 . With Two values of ρ were ex-

plored 0.2 and 0.9 with ϵ and X are independent. 

Experiment 3. In this experiment we simulate 200 datasets consist-

ing of sample size 

 n= 25,100 observation from the following model. 

 

Y= 1+2(XTβ + 3) log (3 |XTβ| + 1) + ϵ  

 

WhereX=(x1,x2,x3,x4,x5, x6,x7)T , β = (0.4, −0.4,0.8, −0.2,0,0,0)T 

, xi are iid ~N(0, σ2) , ϵ ~ N(0, 1) and correlation between xi and xj 

, is ρ|i−j| for i ,j =1 , 2 , 3 , 4, 5, 6,7. With two values of ρ were 

explored 0.2 and 0.9 with ϵ and X are independent. 
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Table 2: Amse For Coefficients Β Estimated by Methods (Mave-Biwieght, Mave-Epanechnikov and Mave – Gaussian) Based on the Model in Experi-

ment 2 for Sample Size, N = 25,100  with Ρ =  0.2 , 0.9  and P = 5 .  

β̂5  β̂4  β̂3  β̂2  β̂1   methods  sample size ρ 

0.40672 0.45107 0.42394 0.51004 0.43730 )Average(β̂   
MAVE-B 

 
25 

 
0.2 

0.11209 0.11685 0.12220 0.10707 0.13259 AMSE 

0.42287 0.46509 0.45129 0.44731 0.44845 )Average(β̂   
MAVE-E 0.04169 0.05129 0.04255 0.04615 0.05032 AMSE 

0.41379 0.46736 0.45506 0.44625 0.45179 )Average(β̂   

MAVE-G 0.04708 0.05297 0.04180 0.04592 0.04670 AMSE 

0.46947 0.47440 0.32959 0.38704 0.54414 )Average(β̂    

MAVE-B 

 

25 

 

0.9 

0.14976 0.23489 0.24989 0.21327 0.15749 AMSE  

0.45642 0.44849 0.42537 0.44839 0.45664 )Average(β̂   

MAVE-E 0.10290 0.16512 0.17228 0.16980 0.09681 AMSE 

0.45155 0.44991 0.43109 0.42583 0.47592 )Average(β̂   

MAVE-G 0.09634 0.17596 0.16934 0.18556 0.09500 AMSE 

0.39058 0.51013 0.46495 0.44376 0.41724 )Average(β̂  

MAVE-B 

 
100 

 

  
0.2 

 

0.12885 0.13704 0.11837 0.14493 0.14655 AMSE 

0.43745 0.46118 0.44658 0.44754 0.44295 )Average(β̂  
MAVE-E 60.0117  0.01666 0.01331 0.01120 0.01467 AMSE 

0.43888 0.45908 0.44704 0.44643 0.44437 )Average(β̂   
MAVE-G 0.01175 0.01706 0.01341 0.01215 0.01440 AMSE 

0.30482 0.52445 0.58982 0.32393 0.42333 )Average(β̂   

MAVE-B 

 

100 

 

0.9 

0.15464 0.24470 0.24252 0.21529 0.14855 AMSE 

0.43303 0.45112 0.46386 0.44144 0.44599 )Average(β̂   

MAVE-E 0.04301 0.07803 0.07157 0.08485 0.04707 AMSE 

0.43844 0.45031 0.45591 0.44694 0.44425 )Average(β̂   

MAVE-G 0.04305 0.08052 0.07595 0.08705 0.05032 AMSE 

 

 

 

 
Table 3: AMSE for Coefficients Β Estimated by Methods (MAVE-Biwieght, MAVE-Epanechnikov and MAVE – Gaussian) Based on the Model in Ex-

periment 1 for Sample Size N =25,100 with Ρ = 0.2, 0.9 and P =6 

β̂6 β̂5 β̂4 β̂3 β̂2 β̂1  methods  sample size ρ 

0.15668 0.44194 0.45290 0.42675 0.45099 0.43530 )Average(β̂  
MAVE-B 

 
25 

 
0.2 

0.04949 0.01926 0.01959 0.01851 0.01774 0.01817 AMSE 

0.06392 0.44087 0.44736 0.44485 0.44343 0.45484 )Average(β̂    
MAVE-E 0.00947 0.00733 0.00645 0.00666 0.00781 0.00563 AMSE 

0.06685 0.44082 0.44700 0.44551 0.44389 0.45372 )Average(β̂   
MAVE-G 0.00964 0.00726 0.00636 0.00647 0.00728 0.00546 AMSE 

0.16429 0.41046 0.47639 0.39215 0.52544 0.38431 )Average(β̂   

MAVE-B 

 

25 

 

0.9 

0.13349  0.13236 0.16629 0.14530 0.17495 0.08829 AMSE 

0.06624 0.46334 0.41590 0.48001 0.41453 0.45352 )Average(β̂   

MAVE-E 0.04065 0.04842 0.07267 0.06311 0.08195 0.03831 AMSE 

0.06869 0.46459 0.41314 0.47978 0.41421 0.45494 )Average(β̂   

MAVE-G 0.03999 0.04758 0.07093 0.06137 0.08167 0.03676 AMSE 

0.06310 0.45589 0.44838 0.43980 0.45863 0.42820 )Average(β̂   

MAVE-B 

 

100 

 

  

0.2 

 

0.02731 0.02005 0.01914 0.02085  0.01977 0.02092 AMSE 

0.05145 0.44469 0.44791 0.44421 0.45143 0.44480 )Average(β̂   

MAVE-E 0.00331 0.00129 0.00113 0.00108 0.00107 0.00126 AMSE 

0.05651 0.44463 0.44790 0.44413 0.45117 0.44460 )Average(β̂   
MAVE-G 0.00387 0.00125 0.00111 0.00105 0.00104 0.00122 AMSE 

0.05410 0.54070  0.32506  0.36691  0.54081  0.41465 )Average(β̂   
MAVE-B 

 

100 

 

0.9 

0.09891  0.17670  0.16215  0.16566  0.16461  0.10381 AMSE 

0.04886 0.45746 0.43993 0.43805 0.45064 0.44701 )Average(β̂   

MAVE-E 0.00814 0.01021 0.01577 0.01427 0.01266 0.00705 AMSE 

0.05082 0.45671 0.44084 0.43821 0.45005 0.44709 )Average(β̂   

MAVE-G 0.00822 0.00993 0.01542 0.01398 0.01240 0.00694 AMSE 
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Table 4: The Average and Average Mean Squared Error (AMSE) for Coefficients Β which are Estimated by Methods (MAVE-Biwieght, MAVE-

Epanechnikov and MAVE – Gaussian) Based on the Model in Experiment 3 for Sample Size, N=25,100 with Ρ = 0.2, 0.9 and P =7. 

β̂7 β̂6 β̂5 β̂4 β̂3 β̂2 β̂1  methods  
sample 

size 
ρ 

0.27079 0.27241 0.29558 0.15367  0.69527 .  0.06336 0.50403 )Average(β̂  

MAVE-B 

 

25 

 

0.2 

0.13893 0.13213 0.15983 0.20426 0.27521 0.34889 0.11876 AMSE 

0.25736 0.32911 0.28459 0.21132 0.67674 0.12630 0.47524 )Average(β̂  

MAVE-E 0.12006 0.16192 0.13386 0.25486 0.15202 0.39983 0.06281 AMSE 

0.25865 0.33253 0.28846 0.20894 0.67567 0.11662 0.47489 )Average (β̂   
MAVE-G 0.12028 0.16481 0.13948 0.25638 0.15760 0.39051 0.06482 AMSE 

0.04374 0.10344 0.05614 0.10937-  0.80748 0.24808-  0.50862 )Average(β̂   
MAVE-B 

 
25 

 
0.9 

0.07520 0.12756 0.09106 0.12197 0.10663 0.13219 0.08078 AMSE  

0.03071 0.03083 0.04639 0.16678-  0.83119 0.31698-  0.42045 )Average(β̂  
MAVE-E 0.04176 0.06106 0.05514 0.05790 0.07010 0.07596 0.03681 AMSE  

0.02835 0.03476 0.04734 0.17548-  0.83295 0.31556-  0.41418 )Average(β̂  

MAVE-G 0.03959 0.05539 0.05237 0.05150 0.05909 0.07927 0.03608 AMSE  

0.07423 0.07807 0.06299 0.12303-  0.82163 0.28840-  0.45937 )Average(β̂   

MAVE-B 

 

100 

 
  

0.2 

 

0.02349 0.02198 0.02349 0.04941 0.30022 0.11735 0.08680 AMSE 

0.13080 0.14034 0.13369 0.04414-  0.82594 0.21177-  0.46511 )Average(β̂   

MAVE-E 0.04142 0.04909 0.04367 0.07343 0.06916 0.12686 0.02069 AMSE 

0.12955 0.13872 0.13311 0.04733-  0.82637 0.21250-  0.46472 )Average(β̂  

MAVE-G 0.04053 0.04775 0.04220 0.06934 0.07022 0.12354 0.02112 AMSE 

0.01374 0.02013 0.03120 0.18429-  0.80106 0.37670-  0.42525 )Average(β̂   

MAVE-B 

 
100 

 
0.9 

0.02250 0.04224 0.03878 0.03841 0.01581 0.02473 0.02259 AMSE 

0.01364 0.01157 0.01184 0.18630-  0.80296 0.38675-  0.41291 )Average(β̂  
MAVE-E 0.00249 0.00567 0.00296 0.00378 0.00195 0.00490 0.00193 AMSE  

0.01754 0.01419 0.01506 0.18198-  0.80467 0.38257-  0.41506 )Average(β̂   
MAVE-G 0.00328 0.00552 0.00343 0.00448 0.00174 0.00538 0.00203 AMSE 

 
Table 5: AMSE for Ĝ (Xi

tΒ̂) Estimated by Methods (MAVE-Biwieght, MAVE-Epanechnikov and MAVE – Gaussian) Sample Size N =25,100 with ρ = 

0.2, 0.9 

ρ =0.9,n=100 ρ =0.9 ,n= 25  ρ =0.2 , n=100     ρ =0.2,n=25  

 
methods 

  

p Model  
AMAE 

 
AMSE 

 
AMAE 

 
AMSE 

 
AMAE 

 
AMSE 

 
AMAE 

 
AMSE 

0.00574 0.01021 0.00563 0.00971 0.0055976 0.009697 0.005652 0.009854 MAVE-B 
 

5 

 

1 
0.00534 0.00220 0.00559 0.00972 0.0055977 0.009699 0.005651 0.009851 MAVE-E 

0.00571 0.00861 0.00530 0.00869 0.00555 0.00952 0.005658 0.009919 MAVE-G 

0.13056 121.548 0.12472 825.082 0.02682 0.45480 0.02478 0.42850 MAVE-B  
6 

 

 
2 

 

0.11303 121.465 0.12478 825.076 0.02383 0.41450 0.02478 0.42837 MAVE-E 

0.09350 115.234 0.11190 824.211 0.02250 0.41636 0.02456 0.42306 MAVE-G 

0.01840 0.13185 0.02077 0.17318 0.02272 0.20045 0.02699 0.27856 MAVE-B 
7 

 

3 

 
0.01815 0.12640 0.02065 0.17067 0.02272 0.20086 0.02706 0.27955 MAVE-E 

0.01844 0.13030 0.02570 0.19794 0.02186 0.18155 0.02570 0.25173 MAVE-G 

 

According to the AMSE for the coefficients β̂ , from Table 2,3,and 

4 .In general , and for different experiments we observed that in 

the majority of the estimated coefficients , and According to the 

AMSE and AMAE for the link function ĝ (Xi
Tβ̂) from table 5. The 

MAVE-G method have a lower AMSE and a lower AMAE than 

the MAVE-E and MAVE-B method. 

4.2. Real data 

To illustrate the performance of our methods from through analy-

sis of the Iraq stock exchange data, the data set in our consist of 

n=27 companies, 21 banks sector, 4 Insurance sector and 2 in-

vestment sector. Through of average Interval (2008-2011) based 

on companies guide and it is a variable in the R- Package.  

The response variable (yi) is Earning per share (Iraqi Dinars (ID)) 

and The selected There are seven explanatory variables. 

𝑥1- Share Turnover Ratio (%)  

𝑥2- Owner ship Rate (%) 

𝑥3- Interest Repetition (time) 

𝑥4- Trading Rate (%) 

𝑥5- Book Value (ID) 

𝑥6- Annual closing price (ID) 

𝑥7- Annual Average price 

We estimate vector of parameters (β) and link function g ( XT β) 

for semi-parametric singl – index model between The Earning per 

share (yi) and seven independent variables for predictor to earning 

per share in Iraq stock exchange from The following semi-

parametric single – index model : 

 

yi = g(xi1β1  +   xi2β2 + xi3β3 +xi4β4 + xi5β5 + xi6β6 +
xi7β7) +∈i   
 

According to Real data listed in the table below. Based on compa-

nies guide of Iraq stock exchange. 
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Table 6: A Real Data for Iraq Stock Exchange of Average Interval (2008-2011) 

X7 X6 X5 X4 X3 X2 X1 Yi n 

1.41 1.315 1.36275 1.785 21.6475 43.525 12.028 0.095 1 
2.46 2.48 1.26125 1.1425 12.9375 14.7775 17.7275 0.20475 2 

0.96 0.94 1.005 2.0125 156.3275 52.24 41.3725 0.0055 3 

1.9475 1.9925 1.385 1.0725 9.8925 14.975 30.5175 0.2024 4 
1.205 1.21 1.2115 1.4475 10.585 33.5125 19.4175 0.1315 5 

0.96 0.8575 1.0975 2.015 64.7852 51.3475 6.395 0.045 6 

3.11375 3.075 1.38 1.405 25.51 28.805 2.365 0.145 7 
5.9625 5.625 1.035 1.155 120.24 14.3 0.775 0.15175 8 

0.9175 0.8575 1.1075 2.5275 111.5175 69.1925 76.325 0.02925 9 
1.1 1.145 1.17375 1.38 14.0325 33.59 11.16 0.09925 10 

1.8225 2.1975 1.3605 1.3675 17.8325 32.66 10.255 0.22625 11 

1.2125 1.29 1.275025 1.2525 8 24.185 16.555 0.2075 12 
1.2075 1.215 1.28975 1.3775 7.3475 29.0525 14.705 0.185 13 

0.915 0.9125 1.12 2.03 13.1875 53.485 3.7625 0.08075 14 

2.48875 2.2025 1.3025 1.2575 12.19 24.6475 24.82 0.1925 15 
1.8025 1.8425 1.39525 1.3175 11.3225 26.365 2.345 0.1855 16 

1.06375 1.005 1.2035 1.7925 7.07 46.27 9.125 0.14725 17 

1.65625 1.3225 1.17125 20.875 18.4375 51.61 7.265 0.2955 18 
1.465 1.575 1.375 1.49 8.3375 34.1825 25.39 0.145 19 

0.43 0.39 1.09925 1.365 4.2425 32.045 1.2875 0.08175 20 

0.245 0.2425 1.1075 1.39 1.155 33.02 0.095 0.26175 21 
1.27 1.255 1.485 5.6 16.3325 80.5375 24.675 0.13725 22 

2.7625 2.4875 1.3765 19.1125 103.56 94.4175 16.885 0.08025 23 

1.125 1.055 1.3625 8.4925 14.2925 89.145 8.605 0.10975 24 
1.275 1.21 1.053 14.97 45.2225 91.7925 51.2875 0.001925 25 

1.6735 1.6625 11.075 23.51 67.495 93.41 11.335 0.09425 26 

1.0225 1.0875 1.16925 11.9425 27.9075 91.6375 13.0178 0.05 27 

 

 

 
Table 7:  The Estimated Coefficients Β̂ for Single Index Model which are Estimated by Methods (MAVE-Biwieght, MAVE- Epanechnikov and MAVE-
Gaussian) Based on Real Data 

coefficients β̂ 
Methods 

β̂7 β̂6 β̂5 β̂4 β̂3 β̂2 β̂1 

0.48282 0.45523-  0.07417 0.43744-  0.15398 0.58040 0.04695 MAVE-B 

0.45439 0.45003-  0.05470 0.43922-  0.23449 0.57626 0.08946 MAVE-E 

0.35420 0.33928-  0.12048-  0.55173 0.13815-  0.64090-  0.10508 MAVE-G 

 

 

 
Table 8:  The Values of MSE and MAE for Single Index Model which are Estimated by Methods (MAVE-Biwieght, MAVE- Epanechnikov and MAVE-

Gaussian) Based on Real Data 

MAE MSE Methods 

0.03518 0.00229 MAVE-B 
0.03623 0.00233 MAVE-E 

0.03171 0.00210 MAVE-G 

 

 

 

 
Fig. 1: Plot Explain the Estimated Coefficients Β of Single – Index Model which are Estimated by the Different Methods (MAVE-B , MAVE-E and 

MAVE-G ) Based on A Real Data. 

 

-1

-0.5

0

0.5

1

 ̂β1  ̂β2  ̂β3  ̂β4  ̂β5  ̂β6  ̂β7

estimted coefficients β by using different methods for real data

MAVE-B

MAVE-E

MAVE-G



International Journal of Advanced Statistics and Probability 43 

 

 
Fig. 2: Plot for the Smooth Estimated Curve Ĝ (Xi

tΒ̂) of Single – Index Model which are Estimated By Methods (MAVE-B, MAVE-E and MAVE-G ) 

with Based on Areal Data. 

 

According to the MSE and AME for link function ĝ (Xi
Tβ̂) of 

single – index model from table 8 and figure 2. We find that the 

same results in simulation study are extended to practical study, 

the results of the real data example confirm the results of the simu-

lation studies, i.e,the MAVE-G show a better performance than 

the MAVE-E and MAVE-B method .  

5. Conclusions 

We can be conclude that the MAVE method based on Gaussian 

kernel function perform well in comparison to the MAVE method 

based on Epanechnikov and Biweight kernel function for estimat-

ed parameters and link function of semi-parametric single–index 

model.  
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